Class schedules
This is the working schedule for the course. It is subject to change.
Abbreviation key: OI = OpenIntro Stats textbook, CC = coding challenge, MDSR = Modern Data Science with R
Month | Day | Topic | Notes | HW Due | Reading | |
---|---|---|---|---|---|---|
Sep | Tu, 4 | Intro, motivation | Lec 1 | Kaplan 1 | ||
Th, 6 | Syllabus | |||||
Tu, 11 | What is data? | Lec 2 | Kaplan 2, post | |||
Wed, 12 | Lab 1 - Group Write-Up | |||||
Th, 13 | discussion | Lab 1 | gaydar critique, orig. paper | |||
Fri, 14 | Lab 1 - Ind Write-Up | |||||
Tu, 18 | Data visualization and summary | Lec 3 | Data viz reading list, Kaplan 3 | |||
Th, 20 | Lab 2 topic | |||||
Fr, 21 | CC1 | |||||
Tu, 25 | Language of Models | Lec 4 | Kaplan 6, 7 | |||
Th, 27 | Linear Regression | Lec 4 w/markup | ||||
Fri, 28 | Lab 2 | |||||
Oct | Tu, 2 | Linear Regression | Lec 5 | Kaplan 8-9, OI 7, OI Videos | ||
Th, 4 | Linear Regression | Lec 6 | OI Videos | |||
Fri, 5 | Lab 3 | |||||
Tu, 9 | No Class | |||||
Th, 11 | Logistic regression | Lec 7 | Kaplan 16, OI 8, OI Video | |||
Fri, 12 | Lab 4 | |||||
Tu, 16 | Project | |||||
Th, 18 | Project | |||||
Fri, 19 | ||||||
Tu, 23 | Project | |||||
Th, 25 | Project | |||||
Fri, 26 | CC2 | |||||
Tu, 30 | Project | CC3 | ||||
Nov | Th, 1 | Project | ||||
Fri, 2 | ||||||
Tu, 6 | Project | |||||
Th, 8 | ||||||
Fri, 9 | CC4 | |||||
Mo, 12 | Projects due | |||||
Tu, 13 | Understanding Uncertainty | Lec 8 | Kaplan 11-13 | |||
Th, 15 | Understanding Uncertainty | Suppl | ||||
Fri, 16 | ||||||
Tu, 20 | Thanksgiving | |||||
Th, 22 | Thanksgiving | |||||
Tu, 27 | Understanding Uncertainty | Lec 9, Suppl | Kaplan 14-15 | |||
Th, 29 | Understanding Uncertainty | Kaplan 14-15 | ||||
Fri, 30 | Lab 5 | |||||
Dec | Tu, 4 | Professional Ethics | MDSR 6 | |||
Th, 6 | Final exam review | |||||
Fri, 7 | Lab 6 | |||||
Tu, 11 | Final Exam | |||||
Fri, 14 |