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Today’s Lecture

It aint what you dont know that gets you into trouble. Its what
you know for sure that just aint so. -Mark Twain

Today’s central question

What do linear regression models tell us about what we know and
do not know about a particular dataset?

Based loosely on Kaplan, Chapter 12.



Process of building a statistical model
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How much will a sample tell us about the population

In practice we can very rarely sample the entire population of
interest.
We can create a simple example of a population as a illustration.
E.g. 8636 running times for the Cherry Blossom Ten Mile race in
Washington DC in 2005:

race <- mosaicData::TenMileRace

head(race)

## state time net age sex

## 1 VA 6060 5978 12 M

## 2 MD 4515 4457 13 M

## 3 VA 5026 4928 13 M

## 4 MD 4229 4229 14 M

## 5 MD 5293 5076 14 M

## 6 VA 6234 5968 14 M



A simple model for the race data

net ∼ age + sex

or

net = β0 + β1 · age + β2 · sex

Using all the data, i.e. the entire “population”

fm <- lm(net ~ age + sex, data=race)

summary(fm)$coef

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5339.15545 35.0486629 152.33550 0.000000e+00

## age 16.89362 0.9443776 17.88863 2.660668e-70

## sexM -726.61948 20.0181263 -36.29808 1.281442e-268



Let’s talk about SEs!

I We can use “statistical inference” to gauge our uncertainty
about our estimated βs.

I Intuitively, we want to estimate how much uncertainty we
expect to have about each β in our model.

I Out of the box, R gives you p-values to test hypothses of the
form: H0 : βk = 0.

I The more uncertainty we have about a specific β̂k , the less
likely we are to reject the null hypothesis.

summary(fm)$coef

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5339.15545 35.0486629 152.33550 0.000000e+00

## age 16.89362 0.9443776 17.88863 2.660668e-70

## sexM -726.61948 20.0181263 -36.29808 1.281442e-268



Hypothesis testing for β̂k

Null hypothesis (H0): βk = 0
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We need a measure of uncertainty about our point-estimates to
evaluate “statistical significance”, which is different from “practical
significance”.



Hypothesis testing for β̂k

Null hypothesis (H0): βk = 0
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Sampling distributions measure our uncertainty. But we have to
come up with ways to approximate them.



Factors influencing our uncertainty about β̂k

How do each of these factors influence uncertainty about β̂k

I Increased sample size:

I Increased variability in y ;

I Increased variability in x :

I Bias in your sampling of observations:



Sampling distribution terminology

Really important vocabulary!

� sampling distribution: the distribution of an estimated
parameter, reflecting the randomness of the sampling (data
collection) process.

� standard error: the standard deviation of a sampling
distribution, measures the precision of our estimate or the
amount of information we have about the parameter.

� margin of error: the half-width of the confidence interval

� point estimate: the exact numerical value that represents
our best guess at the true parameter value. (In regression,
this is the least-squares estimate of our β.)

� p-value: the probability of observing a value of as or more
extreme as what you did observe in your data, assuming the
null hypothesis is true.



Standard inference about βk in R
Assuming H0 : βage = 0 is true we can use the estimated SE to
approximate the sampling distribution as a t-distribution. We see
that if H0 were true, our observed β̂age would be VERY unlikely.

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5339.15545 35.0486629 152.33550 0.000000e+00

## age 16.89362 0.9443776 17.88863 2.660668e-70

## sexM -726.61948 20.0181263 -36.29808 1.281442e-268
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Different inference techniques

Standard inference
Uses a mathematical approximation to the sampling distribution
that gets more reliable with larger sample sizes. In many practical
data analysis situations, this standard inference procedure works
just fine.

Permutation-based inference
Uses numerical/simulated approximation to the sampling
distribution under the null hypothesis. This is what we did for the
Lady Tasting Tea example.

Bootstrap inference

Similar to permutation based inference but it does not permute the
data and simulate when H0 is true. Instead, it resamples your data
to estimate the standard error.

Permutation and bootstrap inference can be particularly useful
when you have a procedure that does not have a tidy, closed-form
solution, unlike regression which does.



What if our dataset was only a fraction of the pop’n?

net = β0 + β1 · age + β2 · sex
This is the model fit to the entire population

coef(fm)

## (Intercept) age sexM

## 5339.15545 16.89362 -726.61948

But what if it was just fit to a subsample of the population?
[See activity...]



What if our dataset was only a fraction of the pop’n?

net = β0 + β1 · age + β2 · sex

library(mosaic)

s <- do(500) * lm(net ~ age + sex, data=sample(race, 100))

head(s[,1:5])

## Intercept age sexM sigma r.squared

## 1 5115.484 21.23172 -752.0379 868.1021 0.1609840

## 2 5500.219 18.01911 -998.9722 978.5163 0.1917701

## 3 4974.495 27.71411 -557.4720 750.1912 0.2065647

## 4 5384.336 16.93553 -764.5308 695.6753 0.2604681

## 5 5128.338 24.31173 -927.9286 870.9974 0.2634031

## 6 4701.265 29.01096 -818.3494 915.7264 0.1918550



The sampling distribution of the βs

library(gridExtra)

p1 <- ggplot(s) + geom_density(aes(x=age)) +

geom_vline(xintercept=coef(fm)["age"])

p2 <- ggplot(s) + geom_density(aes(x=sexM)) +

geom_vline(xintercept=coef(fm)["sexM"])

grid.arrange(p1, p2, nrow=1)
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The standard error depends on...

The quality of the data

� If your data collection process involves a measurement process
that contains a lot of error (just noise, not biased observations
on average), how will that impact the standard errors?

� In the setting of the race, what measurement procedures
might lead to less or more error?



The standard error depends on...

The quality of the model

Models with lower residual error tend to have lower standard errors
than ones with larger residual error.



The standard error depends on...

The sample size

As the sample size increases, what happens to the standard error?



The standard error and sample size

s100 <- do(100) * lm(net ~ age + sex, data=sample(race, 100))

s1000 <- do(100) * lm(net ~ age + sex, data=sample(race, 1000))

ggplot() + geom_density(aes(x=age), fill="red", alpha=.5, data=s100) +

geom_density(aes(x=age), fill="blue", alpha=.5, data=s1000)
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The standard error and sample size (con’t)

The formula for the standard error is proportional to 1/
√
n. This is

kind of a slow decrease: “to make the standard error 10 times
smaller you need to make the dataset 100 times larger”!



And now, back to our true sample

In reality, we don’t have the luxury of measuring the entire
population!

� We can use information in the original sample to make a good
guess at what the sampling distribution is (see Kaplan Ch
5.2).

� The guess is based on an approximation that has good
properties when the assumptions of our model aren’t broken.

fm <- lm(net ~ age + sex, data=race)

summary(fm)$coef

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5339.15545 35.0486629 152.33550 0.000000e+00

## age 16.89362 0.9443776 17.88863 2.660668e-70

## sexM -726.61948 20.0181263 -36.29808 1.281442e-268



Confidence Interval
A confidence interval summarizes our uncertainty about a
point estimate.

� For example: “our analysis suggests that the age coefficient in
the model is 17 ± 2, with 95% confidence.”

� More precisely, we could do the calculation as: 16.9 ± 2*0.94.

� We multiply the standard error by two because this
approximates a 95% coverage interval of the sampling
distribution.

� NOTE: when your sample size is very small (e.g. n < 20) the
multiplier of 2 is misleading, and larger values should be used.
See, e.g. Table 12.1 in Kaplan.

summary(fm)$coef["age",]

## Estimate Std. Error t value Pr(>|t|)

## 1.689362e+01 9.443776e-01 1.788863e+01 2.660668e-70



Confidence in predictions
Confidence intervals are not appropriate for making
predictions about individual data-points!

r <- sample(race, 500)

qplot(age, net, data=r) + geom_smooth(method="lm")
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E.g. 95% of 60-year-olds will not have times within ± 200 of the
predicted value (∼ 5900).



Confidence in predictions

Confidence intervals for regression coefficients represent the
uncertainty in the coefficient, but not in the predictions at certain,
fixed values. Recall that the line has to pass through the point
(x̄ , ȳ). Small changes in slope/intercept will have minimal changes
to where the line passes near that fulcrum, and larger changes at
the fringes.
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Making predictions

head(predict(fm, interval="confidence"))

## fit lwr upr

## 1 4815.259 4757.616 4872.903

## 2 4832.153 4776.141 4888.165

## 3 4832.153 4776.141 4888.165

## 4 4849.047 4794.652 4903.442

## 5 4849.047 4794.652 4903.442

## 6 4849.047 4794.652 4903.442

head(predict(fm, interval="prediction"))

## fit lwr upr

## 1 4815.259 3050.770 6579.749

## 2 4832.153 3067.716 6596.590

## 3 4832.153 3067.716 6596.590

## 4 4849.047 3084.660 6613.433

## 5 4849.047 3084.660 6613.433

## 6 4849.047 3084.660 6613.433



Making predictions

predict(fm, newdata = data.frame(age=c(20, 50, 60),

sex=c("M", "M", "M")),

interval="prediction")

## fit lwr upr

## 1 4950.408 3186.285 6714.532

## 2 5457.217 3693.359 7221.075

## 3 5626.153 3861.995 7390.312



Prediction vs. confidence interval, race data
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Today’s key topics

� Sampling distributions

� Standard error

� Confidence errors and intervals for coefficients

� Prediction intervals for future observations


