
Using splines in regression

Author: Nicholas G Reich, Andrea Foulkes

This material is part of the statsTeachR project

Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported
License: http://creativecommons.org/licenses/by-sa/3.0/deed.en US

Today’s Lecture

� Assessing model accuracy

� Overfitting

� Fitting smooth curves to data

More info:

� ISL Chapter 7

Assessing model accuracy: Regression setting

I The mean squared error (MSE) is the most commonly used
measure of the performance of a statistical learning method in
the regression setting:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

I The MSE will be small if the observed and predicted
responses are close to one another, and it will be large if these
differ substantially, in at least some instances.

Robust studies replicate results on ‘external data’

I A good model should have a robust “validation” of the model.

I Ideally, this means replicating results on a new dataset.

I Example 1: a study done by investigators at Institution A
shows that in a sample of 100 cancer patients, a specific set
of commonly collected biomarkers accurately classified cancer
patients based on severity of outcome at 1 year follow-up.
What would be a good replication study?

I Example 2: using photos from a common social media
platform, authors claimed that their face recognition
algorithm could accurately predict the sexual orientation of
individuals based solely on the photo. What would be a good
replication study?

Often, an ‘internal‘ test sample is used

I In general, we are interested in the accuracy of the predictions
that we obtain when we apply our method to previously
unseen data → called the test sample.

I Often, obtaining an external validation or testing dataset is
infeasible or expensive.

I In these cases, investigators may set aside a portion of the
observations from the original dataset as a test sample.

I Test samples can be particularly useful in diagnosing whether
your model was “overfit“ to the particular features of the
training dataset.

Hands-on example: FEV dataset
The FEV dataset describes a sample of 654 youths, aged 3 to 19,
in the area of East Boston during middle to late 1970’s. Data
includes the following variables (among others)

I fev - forced expiratory volume, a measure of lung capacity and
strength (in liters)

I height (in inches)

library("Hmisc")

getHdata(FEV)

head(FEV)

id age fev height sex smoke

1 301 9 1.708 57.0 female non-current smoker

2 451 8 1.724 67.5 female non-current smoker

3 501 7 1.720 54.5 female non-current smoker

4 642 9 1.558 53.0 male non-current smoker

5 901 9 1.895 57.0 male non-current smoker

6 1701 8 2.336 61.0 female non-current smoker

Creating an FEV test sample

set.seed(756) ## so we all get the same result

idx_test <- sample(1:nrow(FEV), size=200) ## 200 test observations

fev_train <- FEV[-idx_test,] ## removing all test observations

fev_test <- FEV[idx_test,] ## leaving all test observations

ggplot(fev_train, aes(height, fev)) + geom_point() +

geom_smooth(method="lm", se=FALSE)

1

2

3

4

5

6

45 50 55 60 65 70 75

height

fe
v

Using a smooth model for fev ∼ height

Let’s fit a model to the data that can capture some of what
appears to be a non-linear relationship between height and fev.
The ns() function in the splines package uses a ”natural spline”
to model a flexible, non-linear relationship bewteen a covariate and
an outcome by splicing together polynomial functions. The larger
the df parameter is, the more functions it pieces together and
therefore the more wiggly the fitted model becomes.

library(splines)

spline_mdl <- lm(fev ~ ns(height, df = 4), data=fev_train)

Visualizing the smooth model

spline_x_vals <- seq(45, 75, by=1)

spline_y_vals <- predict(spline_mdl,

newdata = data.frame(height=spline_x_vals))

ggplot() +

geom_point(aes(x=height, y=fev), data=fev_train) +

geom_line(aes(x = spline_x_vals, y=spline_y_vals), color="red")

1

2

3

4

5

6

50 60 70

height

fe
v

Find the Goldilocks zone!

That model looks good, but how to we know what degree of
smoothness is just the right amount? We can compare MSE
between our training and our test set for different levels of
smoothness.

fev_train$spline_preds <- predict(spline_mdl)

fev_test$spline_preds <- predict(spline_mdl, newdata = fev_test)

(mse_train <- mean((fev_train$fev - fev_train$spline_preds)^2))

[1] 0.1578606

(mse_test <- mean((fev_test$fev - fev_test$spline_preds)^2))

[1] 0.1934739

With your group

I At your tables, assign each individual one value of df to test.
Work together to make sure that at least one df is run on
everyone’s computer.

I Compile a dataset (on the whiteboard and/or on one
computer for the table) with the df value and the associated
MSEs for both the training and testing samples.

I Discuss your results as a table and decide on the optimal df
to choose.

Using a test sample avoids overfitting

I The mean squared error will always get lower with the training
sample as we add more features to our model.

I However, we want to find the model that minimizes the test
sample MSE.

I Overfitting refers to the situation in which a less complex
model would result in a smaller test sample MSE.

MSE: learning versus test sample

0 20 40 60 80 100

2
4

6
8

1
0

1
2

X

Y

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Flexibility

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

Figure 2.9 from ISL. Black line is the true relationship from which
data are simulated

MSE: learning versus test sample

0 20 40 60 80 100

2
4

6
8

1
0

1
2

X

Y

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Flexibility

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

Figure 2.10 from ISL.

Summary

Validating potential models on external data is critical to
understanding how well your model will generalize to another
dataset.

