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Today’s topics

⌅ The language of models

⌅ Model formulas and coe�cients

Example: predicting respiratory disease severity (“lung” dataset)

Reading: Kaplan, Chapters 6 and 7.



Figure acknowledgements to Hadley Wickham.



Watch the first five minutes of Hadley’s UseR! 2016 talk

“ ... every model has to make assumptions, and a model by its

very nature cannot question those assumptions...

models can never fundamentally surprise you because they cannot

question their own assumptions.”



Lung Data Example

99 observations on patients who have sought treatment for the
relief of respiratory disease symptoms.
The variables are:

⌅ disease measure of disease severity (larger values indicates
more serious condition).

⌅ education highest grade completed

⌅ crowding measure of crowding of living quarters (larger
values indicate more crowding)

⌅ airqual measure of air quality at place of residence (larger
number indicates poorer quality)

⌅ nutrition nutritional status (larger number indicates better
nutrition)

⌅ smoking smoking status (1 if smoker, 0 if non-smoker)



Lung Data Example: terms defined

dat <- read.table("lungc.txt", header=TRUE)

ggplot(dat, aes(crowding, disease)) + geom_point() +

geom_smooth(method="lm", se=FALSE)
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Lung Data Example: terms defined

What are the “model values” for the model implied by this figure?

ggplot(dat, aes(factor(smoking), disease)) + geom_boxplot()
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Models are functions

Definition: “a function is a relation between a set of inputs and a
set of permissible outputs with the property that each input is
related to exactly one output”.1

INPUT x

FUNCTION f:

OUTPUT f(x)

In statistical models, inputs are explanatory variables and outputs
are “typical” or “expected” values of response variables.
1

Wikipedia, https://en.wikipedia.org/wiki/Function (mathematics)
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Characterize the relationship

Broadly speaking, what kind of model could describe the
relationship between crowding and disease? How well would you
say this model fits the data? Or predicts new observations?
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Reading model values: predicting new observations

What is the expected value of disease when crowding = 20? 30?
What range would you expect a new observation with
crowding=20 to fall into?
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Lung Data Example: what is the model?

What do you like/dislike about this statement: “Based on this
data, disease status worsens when crowding increases.”
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Di↵erence between these representations of education?

ggplot(dat, aes(education, disease)) + geom_point() +

geom_smooth(method="lm", se=FALSE)
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ggplot(dat, aes(factor(education), disease)) + geom_boxplot()
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Formulas for Statistical Models (Linear Regression)

In general, models can be expressed in this form:

[ explanatory variable ] ⇠ intercept + terms

[ explanatory variable ] = intercept + terms + error

With a single predictor variable, this is simply a line:

Y = a+ b · X + ✏

Y = �0 + �1 · X + ✏

Hwever, there can be di↵erent types of “terms” in this equation

I intercept

I main e↵ects

I interaction terms

I transformations

I smooth terms

computer
syntax

math →

Y=atbX
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Model terms: intercept

model: disease ⇠ 1

equation: \
disease = �0
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Model terms: main e↵ects

model: disease ⇠ 1 + crowding

equation: \
disease = �0 + �1 · crowding
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Model terms: main e↵ects

model: disease ⇠ 1 + smoking vs. disease ⇠ 1 + smoking

cat

equation: \
disease = �0 + �1 · smoking
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Model terms: main e↵ects

model: disease ⇠ 1 + crowd ⇤ smoke

cat

equation: \
disease = �0+�1·crowd+�2·smoke

cat

+�3·crowd ·smoke

cat
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Model terms: smooth e↵ects

model: disease ⇠ 1 + s(education)

equation: \
disease = �0 + s(education)
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Lung Data Example

mlr1 <- lm(disease ~ crowding, data=dat)

kable(summary(mlr1)$coef, digits=2, format="latex")

Estimate Std. Error t value Pr(¿—t—)

(Intercept) 12.99 3.48 3.74 0

crowding 1.51 0.14 10.83 0

mlr2 <- lm(disease ~ crowding + airqual, data=dat)

kable(summary(mlr2)$coef, digits=2, format="latex")

Estimate Std. Error t value Pr(¿—t—)

(Intercept) 2.88 2.49 1.16 0.25

crowding 1.40 0.09 15.02 0.00

airqual 0.31 0.03 11.06 0.00

Why are the coe�cients di↵erent?



Lung Data Example

Estimate Std. Error t value Pr(¿—t—)

(Intercept) 2.88 2.49 1.16 0.25

crowding 1.40 0.09 15.02 0.00

airqual 0.31 0.03 11.06 0.00

What are the interpretations of the coe�cients?


