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Why do we do statistics

� Statistics is the science of turning data into knowledge.

� Knowing what you do not know is one the most important
traits as a scientist/seeker of knowledge through data.



Estimation vs. inference
� Statistical estimation (e.g. the method of least-squares) gives

us our best guess at a parameter.
� Inference tells us how certain we should be about these

estimates.
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There isn’t one accepted way of learning from data

Over the next two weeks, we are going to look at a few different
methods for measuring uncertainty in relationships that we see in
data.

Relationships are characterized by parameters in our models.

e.g. in this model, β1 characterizes an assumed relationship
between FEV and height

F̂EV = β0 + β1 · height



Using models to learn about the world

� One model might describe the relationship between smoking
status and forced expiratory volume.

� Another model could describe the probability that this coin
will land heads.



Underlying most models is a likelihood

� Likelihood is a mathematical function that gives you the
likelihood of a particular parameter given the data you have
seen.

� In regression, when you find the ”least squares” parameters
that minimize the residual sum of squares, these also maximize
the likelihood function. They are mathematically equivalent.

� Likelihood is driven by assumptions that you make about the
distribution and structure of your data. e.g. residuals follow a
Normal distribution, coin flips follow a binomial distribution.



Likelihood for coin-flipping

What is the relative likelihood of each p given 10 coin flips and 5
heads?

L(p|X = 5, n = 10) =

(
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)
· p5 · (1− p10−5)
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X=1, N=2
X=5, N=10
X=50, N=100

Maximum for all curves occurs when p = .5.
The more pointy the likelihood, the more knowledge you have
about the parameter.
Binomial App: http://shiny.stat.calpoly.edu/MLE Binomial/

http://shiny.stat.calpoly.edu/MLE_Binomial/


Schools of inference

Most (not all) statisticians use likelihood to translate data into
knowledge.

� Frequentists use the likelihood to approximate a sampling
distribution.

� Bayesians modify the likelihood based on prior belief to create
a posterior distribution.



Bayesian thinking

A Bayesian incorporates prior belief into the likelihood. What is
your prior belief about what this parameter is?

� Based on prior scientific studies or observations.
e.g.“The laws of physics dictate that this coin is more or less
fair, so I think the probability of getting a head should be
about 0.5.” or “Based on prior studies, there should be a
positive association between height and FEV.”

� Little knowledge can be described as having a weakly
informative prior.
e.g. “Based on common sense, we know that height likely has
a moderate effect of FEV, but it could be positive or negative,
and we don’t really want to make an assumption one way or
another.”

� No knowledge can be described as having a uniform prior.
e.g. “I have no idea what the relationship between FEV and
height should be. it could be anywhere between −∞ and ∞.”



Let’s establish the classes prior beliefs about this coin

Go here to submit your guess:
https://goo.gl/forms/bp6PE4ZHXedoJhj92
We are going to use these guesses to create a prior distribution for
the collective belief in the class about this coin.

probs <- read.csv(file="https://docs.google.com/spreadsheets/d/e/2PACX-1vTd9GsPDSeBtk5Qfx-2xJ-9vSlIaOF7rNYIbVcgWVnx5UC_yoOnQRoQW6kQTMP5kMlPpNaCqrC8m1Ec/pub?gid=1602296264&single=true&output=csv")

(probs$prob)

library(MASS)

fitdistr(probs$prob, "beta", list(shape1=1,shape2=1))



Now, update, using Bayesian reasoning

Every coin flip we observe will update the likelihood and therefore
the posterior distribution as well.
Link to app

https://reichlab.shinyapps.io/bayes-beta-binomial/


We just used Bayesian reasoning to learn about the probability
that this coin lands heads.
Now we are going to use a different kind of statistical reasoning to
evaluate a similar question.
Go to the class activity for today.

https://nickreich.github.io/data-stories/assets/lectures/lecture8-confidence/lecture8-activity.Rmd

