Does a metropolis hastings for the Erlang distribution
mcmc.erlang.Rd
Does a metropolis hastings for the Erlang distribution
Usage
mcmc.erlang(
dat,
prior.par1,
prior.par2,
init.pars,
verbose,
burnin,
n.samples,
sds = c(1, 1)
)
Arguments
- dat
the data to fit
- prior.par1
mean of priors. A negative binomial (for shape) and a normal for log(scale)
- prior.par2
dispersion parameters for priors, dispersion for negative binomial, log scale sd for normal
- init.pars
the starting parameters on the reporting scale
- verbose
how often to print an update
- burnin
how many burnin iterations to do
- n.samples
the number of samples to keep and report back
- sds
the standard deviations for the proposal distribution