Fits the distribution to the passed-in data using MCMC as implemented in MCMCpack.
dic.fit.mcmc.Rd
Similar to dic.fit
but uses MCMC instead of a direct likelihood optimization routine to fit the model. Currently, four distributions are supported: log-normal, gamma, Weibull, and Erlang. See Details for prior specification.
Arguments
- dat
the data
- prior.par1
vector of first prior parameters for each model parameter. If
NULL
then default parameters are used (as described in Details section).- prior.par2
vector of second prior parameters for each model parameter. If
NULL
then default parameters are used (as described in Details section).- init.pars
the initial parameter values (vector length = 2 )
- ptiles
returned percentiles of the survival survival distribution
- verbose
how often do you want a print out from MCMCpack on iteration number and M-H acceptance rate
- burnin
number of burnin samples
- n.samples
number of samples to draw from the posterior (after the burnin)
- dist
distribution to be used (L for log-normal,W for weibull, G for Gamma, and E for erlang, off1G for 1 day right shifted gamma)
- seed
seed for the random number generator for MCMC
- ...
additional parameters to MCMCmetrop1R
Details
The following models are used: $$Log-normal model: f(x) = \frac{1}{x*\sigma \sqrt{2 * \pi}} exp\{-\frac{(\log x - \mu)^2}{2 * \sigma^2}\}$$ $$Log-normal Default Prior: \mu ~ N(0, 1000), log(\sigma) ~ N(0,1000)$$ $$Weibull model: f(x) = \frac{\alpha}{\beta}(\frac{x}{\beta})^{\alpha-1} exp\{-(\frac{x}{\beta})^{\alpha}\}$$ $$Weibull Default Prior Specification: log(\alpha) ~ N( 0, 1000), \beta ~ Gamma(0.001,0.001)$$ $$Gamma model: f(x) = \frac{1}{\theta^k \Gamma(k)} x^{k-1} exp\{-\frac{x}{\theta}\}$$
$$Gamma Default Prior Specification: p(k,\theta) \propto \frac{1}{\theta} * \sqrt{k*TriGamma(k)-1}$$ (Note: this is Jeffery's Prior when both parameters are unknown), and $$Trigamma(x) = \frac{\partial}{\partial x^2} ln(\Gamma(x))$$.) $$Erlang model: f(x) = \frac{1}{\theta^k (k-1)!} x^{k-1} exp\{-\frac{x}{\theta}\}$$ $$Erlang Default Prior Specification: k \sim NBinom(100,1), log(\theta) \sim N(0,1000)$$ (Note: parameters in the negative binomial distribution above represent mean and size, respectively)