
Different ways of running R

a statsTeachR resource

Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported
License: http://creativecommons.org/licenses/by-sa/3.0/deed.en US

http://statsteachr.org


The many ways of running R code

I an interactive session

I knitr

I source(), for loading code

I R CMD BATCH at command line, for running code

2/14



Working with R interactively

To run interactive sessions in R, we have been using RStudio, but
you can also run the R GUI app that comes with the R download.
Or can run at the command line by typing

$ R

3/14



Advantages of interactive sessions

I Encourages data exploration, tinkering, failure until you get it
right

I Immediate feedback

I “Easy” to debug (or at least isolate problem code)

I Archiving of old commands for easy insertion into source files
(RStudio)

4/14



Disadvantages of interactive sessions

I More difficult to reproduce your analysis

I When running long jobs, you can’t work in R unless you start
another R session

I Engourages sloppy, unsystematic coding practices

5/14



Using knitr to run R code

You can also use the knitr package to run R code and produce
reports (HTML, PDF, DOC formats) or slides (Slidy, Beamer,
ioslides). Knitr relies on you having written a .Rmd (RMarkdown)
or .Rnw (technically, a Sweave file, but this is sort of outdated
technology) file. Knitr is most easily used from within RStudio,
but can also be called from within R, using for example:

R> rmarkdown::render("input.Rmd")

6/14



Advantages of using knitr

I Easy to produce nice-looking, reproducible reports

I Runs directly within RStudio

I Caching of large chunks of code

I Customizability in terms of how much code/raw output you
show

7/14



Disadvantages of knitr

I More difficult to troubleshoot/debug

I If something breaks, you have to start over from scratch

I Not as nibmle for data exploration

I Extra baggage if all you want to do is execute some lines of R
code

8/14



Sourcing R files directly

I From within R, you can source a file containing R code.

I Typically, this is done to “source” a bunch of functions that
reside in a separate file.

I This is essentially what loading a package does too (with
some other bells and whistles).

R> source("my-code.R")

9/14



Sourcing code: tips

I Keeps your code tidy and readable

I Keeps your code organized, e.g. one .R file for functions,
another for code to run directly

I Best practice is to not operate on your existing workspace
when you source a file, just load things in.

I source() files that define things, but not that do things.

10/14



Using R CMD BATCH to run R code

I You can run an R file without explicitly opening R.

I Typical use case: you have a script that runs an analysis and
outputs some data. You don’t need a report, just want the
output to be saved somewhere.

$ R CMD BATCH my-script.R my-script.Rout

11/14



Advantages of using R CMD BATCH

I Can run files that take a long time without hanging up your R
GUI.

I Results are reproducible

I You can see the output from the R session by looking at the
.Rout file.

I The R script defines a clear workflow.

12/14



Disadvantages of R CMD BATCH

I Some people are unfamiliar with the command line interface

I As with knitr, harder to debug as you run, code needs to be
polished

13/14



Summary

interactivity, knitr, source(), R CMD BATCH, ...

I I use each of these methods of running R on a daily basis.

I They each have their time and place!

I It takes time to understand how, when, and why to use each
one.

14/14


