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Overview: Models for Multinomial Responses

Note: This lecture focuses mainly on the Baseline Category Logit
Model (see Agresti Ch. 8), but for the exam we are responsible for
reading Chapter 8 of the text and being familiar with all types of
models for multinomial responses introduced there.

I GLMs for Nominal Responses
I Baseline Category Logit Model (Multinomial Logit Model)
I Multinomial Probit Model

I GLMs for Ordinal Responses
I Cumulative Logit Model
I Cumulative Link Models

I Cumulative Probit Model
I Cumulative Log-Log Model
I Adjacent-Categories Logit Models
I Continuation-Ratio Logit Models

I Discrete-Choice Models
I Conditional Logit Models (and relationship to Multinomial Logit Model)
I Multinomial Probit Discrete-Choice Models
I Extension to Nested Logit and Mixed Logit Models
I Extension to Discrete Choice Model with Ordered Categories



Baseline Category Logit Model
The Baseline Category Logit (BCL) model is appropriate for
modeling nominal response data as a function of one or more
categorical or quantitative covariates.

I Example: Modeling choice of voter candidate as a function of
voter age (quantitative), gender (categorical nominal), race
(categorical nominal), and socioeconomic status (categorical
ordinal).

I Example: Modeling transcription factor binding to a promoter
region as a function of transcription factor abundance
(quantitative), affinity for the binding site (quantitative), and
primary immune response activation status (categorical binary).

I Non-Example: Modeling consumer choice of soda size as a
function of air temperature (quantitative) and time of day
(quantitative). Soda size is a categorical ordinal variable, so
although this model will technically work, it does not
incorporate all of the information that our data contain.



BCL Model Formulation

Consider the set of J possible values of a categorical response
variable {C1,C2, . . . ,CJ} and the vector of P covariates
~X = (X1,X2, . . . ,XP)

Goal: For a particular vector of covariates ~xi = (xi1, xi2, . . . , xiP),
predict Yi , the category to which the observation with covariates ~xi
belongs. (Note that Yi ∈ {C1, . . . ,CJ}.)

Intermediate Goal: For all j ∈ 1, . . . , J , use training data to fit
πj(~xi) = P(Yi = CJ |~xi) under the constraint that

∑J
j=1 πj(~xi) = 1

Conditional on the observed covariates and the estimates for the
functions πj , Yi is Multinomial:

Yi |~xi ∼ Multinomial(1, {π1(~xi), . . . , πJ(~xi)})



Overview of Modeling Process

I Choose one of the J categories as a baseline. Without loss of
generality, use CJ (since the Cj are nominal and ordering is
irrelevant).

I Let βj = (βj1, . . . , βjP) be the category-specific coefficients of the
covariates ~xi for a particular category CJ . (note the dimensions of βj
are P x 1)

I Recall ~xi = (xi1, xi2, . . . , xiP) is P x 1
I We now can calculate the following scalar quantity, which is a log

probability ratio that is modeled as a linear function of the covariates
~xi :

log
(
πj(~xi)
πJ(~xi)

)
= αj + βjβjβj

T ~xi



Overview of Modeling Process, continued

I Specifying the probabilities πj relative to the reference category
πJ specifies a similar log probability ratio for any two categories
πa, πb, a 6= b, since

log
(
πa(~xi)
πJ(~xi)

)
− log

(
πb(~xi)
πJ(~xi)

)
= log

(
πa(~xi)
πb(~xi)

)

I Note that we only need to model (J − 1) of the probabilities πj ,
since the constraint

∑J
j=1 πj(~xi) = 1 uniquely constrains the

J th conditional on the (J − 1).



Formulation of the BCL Model as a Multivariate GLM
Response Vector

~yi = (yi1, yi2, . . . , yi(J−1))

Expected Response Vector

E [~yi ] = g (~µi)

Argument to Link Function

~µi = (µi1, µi2, . . . , µi(J−1))
= (π1(~xi), π2(~xi), . . . , πJ−1(~xi))

Link Function

g (~µi) =
(

log π1(~xi)
πJ(~xi)

, log π2(~xi)
πJ(~xi)

, . . . , log
π(J−1)(~xi)
πJ(~xi)

)T

= Xiβββ

where Xi and βββ are defined on the next slide



Formulation of the BCL Model as a Multivariate GLM
Matrix of Covariates
Xi is a (J − 1) x P(J − 1) matrix (recall that P is the number of
covariates) constructed from blocks of the form
(1, xi1, xi2, . . . , xi(P−1))

Xi =


1 xi1 . . . xiP 0 0 . . . 0 . . . 0 . . . 0
0 0 . . . 0 1 xi1 . . . xiP . . . 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 . . . 0 0 0 . . . 0 . . . 1 xi1 .. xip


Vector of Parameters
βββ is a column vector with dimension (J − 1)P x 1, containing the
category-specific coefficients αj and βjk for j ∈ {1, J − 1} and
k ∈ {1,P}:
βββ = (α1, β11, . . . , β1P , α2, β21, . . . , β2P , . . . , αJ−1, β(J−1)1, . . . ,β(J−1)P)T



Multivariate GLM : The Mechanics of Prediction

I Xi is J − 1 x P(J − 1) and βββ is P(J − 1) x 1

I ~yi = g(~µi) = Xiβββ is a J − 1 x 1 column vector

Let X(j)
i refer to the j th row vector of Xi. Then the dot product of

X(j)
i with the parameter vector βββ is the predicted log probability

ratio for observation i and non-reference category Cj :

yij = g(~µi) = log
(
πj(~xi)
πJ(~xi)

)
= X(j)

i · βββ



Multivariate GLM : Example of the Mechanics of
Prediction

Suppose we wish to calculate yi1.
The first row vector of Xi is:

X(1)
i = (1, xi1, xi2, . . . , xiP , 0, 0, 0, . . . , 0)

The column vector of parameters β is the same for all i :
βββ = (α1, β11, . . . , β1P , α2, β21, . . . , β2P , . . . ,αJ−1, β(J−1)1, . . . , β(J−1)P)

Their dot product gives us the predicted yi1:

yi1 =g(π1(~xi)) = log
(
π1(~xi)
πJ(~xi)

)
=X(1)

i · βββ
=1α1 + xi1β11 + · · ·+ xiPβ1P

+ 0 ∗ α2+0∗β21+ · · ·+ 0∗β2p

+ . . .

+ 0∗αJ−1+0∗β(J−1)1+ · · ·+ 0∗β(J−1)p

=1α1 + xi1β11 + · · ·+ xiPβ1P



Response Probabilities

Note the following relationship:

log
(
πj(~xi)
πJ(~xi)

)
= Xiβββ =⇒ πj(~xi) = exp(Xiβjβjβj)

1 +
∑J−1

n=1 exp(Xiβnβnβn)

The argument of the log function here is sometimes referred to as
the “relative risk” in the public health setting.



Response Probabilities

Plotting the πj (~xi ) as a function of one covariate xij can provide a nice graphic of how these probabilities compare
to one another when projected onto xij × πj (i.e., compare the category-specific response probabilities for different
values of the jth covariate for subject i with all other covariates held constant).



Using χ2 or G2 as a Model Check

When all predictors in a model are categorical and the training data
can be represented in a contingency table that is not sparse, the
chi2 or G2 goodness-of-fit tests used earlier in the semester can be
used to assess whether or not the fitted BCL model is appropriate.
(generate “expected” contingency table from predicted results and
then “residuals” are expected-observed)

If some predictors are not categorical or the contingency table is
sparse, these statistics are “valid only for comparing nested models
differing by relatively few terms” (A. Agresti, Categorical Data
Analysis p. 294). This means that they cannot validly be used as a
model check overall, but they can be used to compare fit of full
vs. reduced models if the full model only has “relatively few” more
covariates than the reduced one(s).



Example: Using Symptoms to Classify Disease (Reich Lab
Research)

Motivating Question: Confirmatory clinical tests are expensive
and take time, meaning they are not a reasonable diagnostic option
in many public health settings. Can we instead design a model that
can use routine observable symptoms to classify sick individuals
accurately? (Adapted from work in progress by Brown et. al. )

Categories:

I C1: Dengue
I C2: Zika
I C3: Flu
I C4: Chikingunya
I C5: Other
I C6: No Diagnosis

Covariates (a few of many in the
actual model):

I Age
I Headache
I Rash
I Conjunctivitis
I ...



Using Symptoms to Classify Disease, Continued

Assume that each individual can only have one disease at once, and
let yi be a binary vector representing the gold-standard diagnosis of
the i th individual in the training set. For example, using the ordering
on the previous slide, the observation

y1 = (0, 0, 1, 0, 0, 0)

means that individual 1 was diagnosed with the flu using
gold-standard methods.

The proposed model chooses the category C6 : No Diagnosis as the
baseline category, estimates the πj based on the training data
{(yi , ~xi)} and finds the set of parameters βββ such that

log
(
πj(~xi)
π6(~xi)

)
= Xiβββ



Using Symptoms to Classify Disease: Visualization Method
We might use a graphic like the one below to represent resulting estimates
for βββ (these results are just randomly generated from a standard normal
distribution):



Using Symptoms to Classify Disease: Interpretation of
Graphic

Here are a few interpretations of what this model’s coefficients would
mean from our classmates, taken with author permission from the course
discussion page on Piazza.
“A dark blue rectangle means that your probability of being diagnosed with that

particular disease (given the presence of that covariate) is lower than the probability
that you will have the negative diagnosis (given the presence of that covariate). In
particular, the ratio of the probabilities is eβ , which in the ‘dark blue case’ could be
something like e−1. If it were that particular value, that means that P(that_disease) /
P(neg_diagnosis) would be about .36 - that is, your probability of the diagnosis is
about 1/3 of the probability of the baseline.” - Yukun Li and Josh Nugent

“Holding all else constant, given you have a covariate, the risk ratio of having a
disease versus a negative test is eβ .” - Bianca Doone

“If X is a binary category variable (group1: X = 1, group2: X = 0): Holding other
variable constant, the risk ratio of having a jth disease versus a negative test in group
1 is eβ times the risk ratio in group 2. If X is a contiuous variable: Holding other
variable constant, with one unit increase in X , the risk ratio of having a jth disease
versus a negative test is multiply by eβ .” - Guandong (Elliot) Yang



Supplementary - Utility Functions and Probit Models

In a setting where the response variable is categorical and represents
an individual’s choice as a function of certain covariates, we can
define a utility function that takes on values U1, . . . ,UJ for each of
C1, . . . ,Cj categories. The “voter choice” example from earlier in
these notes represents such a setting.

Models based on utility functions assume that the individual will
make the choice of maximum utility, i.e., choose the category j∗
such that Uj∗ = maxj{Uj}.

Utility is typically different for each individual, so a more detailed
formulation defines Ui = (Ui1, . . . ,UiJ) for each individual i , and
predicts response j∗

i such that Uij∗ = maxj{Uij}.



Supplementary - Utility Functions and Probit Models
(Agresti p.299)

If a utility function is used as the link function in the multivariate
GLM, we get an equation of the form:

Uij = αj + βββT
j (~xi) + εij

Under the assumption that the distribution of the εij are i.i.d. with
the extreme value distribution, McFadden (1974) showed that this
model is equivalent to the BCL model. In this setting, the
interpretation of βj is the expected change in Ui j with a change of
one unit in covariate xij , all other covariates held constant.

Recall that the extreme value distribution has CDF:

FX (x) = exp(−exp(−x))

What if the εij are not assumed to have this distribution?



Supplementary - Utility Functions and Probit Models
(Agresti p.299)

If we instead assume εij are i.i.d. with the standard Normal
distribution, the resulting model

Uij = αj + βββT
j (~xi) + εij

is the multinomial probit model. In this setting, the
interpretation of βj is also the expected change in Ui j with a change
of one unit in covariate xij , all other covariates held constant, but
the link Uij is the probit function rather than the logit function.



Why Probit over Logit?
Implicit in the multinomial logit model is dependence on the
Independence of Irrelevant Alternatives (IIA) axiom.

Framed in the language of utility functions, the IIA axiom says:

I If C = {C1,C2} represents the categorical outcome set with
utilities Ui = {Ui1,Ui2} such that Ui1 > Ui2, , then adding a
third option C3 to the outcome set will not change this
ordering.

The multinomial probit model does not depend on the IIA axiom, and is
therefore an interesting approach for many applications, including voting
theory.

Example: In the 2016 election, if the only two candidates in the mix were
Hillary Clinton and Jill Stein, a voter might have chosen Jill Stein knowing
that Hillary was likely to win anyways but that a vote for Jill represented
their beliefs. However, introducing Donald Trump into the mix might have
convinced that voter that they should choose Hillary instead of Jill, since a
third-party vote for Jill would draw from Hillary’s chance. Thus the IIA
axiom is violated. The multinomial probit model can model this setting.



Example: Alvarez and Katz (2007) Multinomial Probit
Model for Election Choice in Chile in 2005

Alvarez and Katz study the 2005 election in Chile, in which
candidates came from three main coalitions with four main
candidates:

I Left coalition (Tomas Hirsch Goldschmidt)

I Center-left Concertacion coalition (Michelle Bachelet Jeria)

I Conservative Alianza por Chile coalition (Independent Democratic
Union - Joaquin Lavin Infante, National Renewal Party - Sebastian
Pinera Echenique)



Example: Alvarez and Katz (2007) Multinomial Probit
Model for Election Choice in Chile in 2005

None of the four candidates won a majority in the first vote, so Chile held
a run-off election and eventually elected Michelle Bachelet Jeria, who had
the highest proportion of votes in the original election.

“We . . . find that the presence of a second conservative candidate
significantly affected citizens’ electoral behavior, increasing the
support for the right and influencing the electoral outcome in a way
that cannot be accounted for by analyses focused exclusively on
citizens’ party identification.”

R. Michael Alvarez and Gabriel Katz, 2007. A Bayesian Multinomial
Probit Analysis of Voter Choice in Chile’s 2005 Presidential Election Social
Science Working Paper 1287, California Institute of Technology, Division
of the Humanities and Social Sciences.

[Election Results] https://en.wikipedia.org/wiki/Chilean_presidential_
election,_2005%E2%80%9306

https://en.wikipedia.org/wiki/Chilean_presidential_election,_2005%E2%80%9306
https://en.wikipedia.org/wiki/Chilean_presidential_election,_2005%E2%80%9306

