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Model Diagnostics via Residuals

» Example: Heart disease and blood pressure (Ch.6.2.2)

» Random sample of male residents in Framingham, MA aged
40-57. The response variable is whether they developed
coronary heart disease during a six-year follow-up period.

> Let 7; be the probability of heart disease for blood pressure
category i.

> Let x; be the categories of systolic blood pressure



Model Diagnostics via Residuals

» Independent model (Blood Pressure is independent of Heart
Disease)
logit(m;) = «

» Linear logit model (models association between Blood Pressure
and Heart Disease)

logit(m;) = o+ Bx;



Model Diagnostics via Residuals

SBP Independence Linear Logit

<117 -2.62 -1.11
117-126 -0.12 2.37
127-136 -2.02 -0.95
137-146 -0.74 -0.57
147-156 0.84 0.13
157-166 0.93 -0.33
167-186 3.76 0.65

>186 3.07 -0.18




Model Diagnostics via Residuals

Residuals

» Standardized residual plot of two models
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Model Diagnostics via Residuals

» The Independent model has increasing residuals as blood
pressure increases, a pattern like this breaks our assumption
that residuals are normally distributed with mean of 0 and
variance of 1.

» The residuals shows that the Independent model does not seem
to be a good model

» However, the Linear Logit model appears to have no pattern
throughout the residual plot and appears to be a good model



Newton Raphson Algorithm

» An iterative method for solving nonlinear equations

» General steps:

1. initial guess for the solution

2. approximate the function locallly and find maximum

3. the maximum becomes the next guess
4. repeat steps 2 and 3 until convergence

vvyyypy

» Recall the solution to the estimating equations:

oL(B) _
o 0

T _ OLB)  OL(B)
pho=( 95 08, )
_PLB)
H_(aﬂiaﬂj),v/,1_1,2,...,p

» where H is Hessian matrix, also called observed information.



Newton Raphson Algorithm

» We are trying to maximize L(/3) through this iterative process
> starting witht =1

) = ()
H® = H(p®)

» where () is our tt" guess of 3



Newton Raphson Algorithm

» Let u(® and H®) be p and H evaluated at B(*)
» According to Taylor series expansion,

L(B) ~ (B + T (8- ) + (8- BO) T HO (B - 50)

> Solve AL(B)/88 ~ D + HO (B — A1) = 0, we get

BEFD — g _ (H()-1,()



Fisher Scoring Method

» Fisher scoring is an alternative iterative method for solving
likelihood equations.

» Use the expected value of Hessian matrix, called the expected
information, denoted as J .

g PLB)
J_( E(aﬁlaﬁj))v“.j_lﬂzuap

BEFD) — g _ (7(0) 1 (0




Inference for GLMs

» The curvature of our likelihood function determines the
uncertainty/information about a parameter

» Classical /Frequentist inference assumes under certain regularity
conditions, that parameters follows Multivariate Normal
distribution centered at ﬁAMLE with asymptotic covariance
approximately by H™! or 7.

» for confidence interval:

B~ N(BME, SE(BMF))
» for hypothesis testing:

BMEE ~ N(Bo, SE(BMF))



Inference for GLMs

» Bayesian inference

» Sample directly from posterior multivariate distribution and
calculate the credible sets.

» Likelihood based inference

» Similarly, directly calculate confidence intervals from likelihood
function.



Inference for GLMs

v

SE and CI for GLMs (Frequentist edition)
95% Cl for f3:

v

B +1.96SE(B)

v

95% Cl for logit(u):

logit(pi) = o + Bxi
= Var(logit(fi;)) = Var(a + Bx;)
= Var(&) + x?Var(B) + 2Cov(&, B)
= Cl : logit(j1;) = 1.96SE (logit(fi;))

v

We can get the 95% CI for u; with Delta method and the Cl
for logit(fi;).



