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Model Diagnostics via Residuals

I Example: Heart disease and blood pressure (Ch.6.2.2)
I Random sample of male residents in Framingham, MA aged

40-57. The response variable is whether they developed
coronary heart disease during a six-year follow-up period.

I Let πi be the probability of heart disease for blood pressure
category i.

I Let xi be the categories of systolic blood pressure



Model Diagnostics via Residuals

I Independent model (Blood Pressure is independent of Heart
Disease)

logit(πi) = α

I Linear logit model (models association between Blood Pressure
and Heart Disease)

logit(πi) = α+ βxi



Model Diagnostics via Residuals

SBP Independence Linear Logit

<117 -2.62 -1.11
117-126 -0.12 2.37
127-136 -2.02 -0.95
137-146 -0.74 -0.57
147-156 0.84 0.13
157-166 0.93 -0.33
167-186 3.76 0.65
>186 3.07 -0.18



Model Diagnostics via Residuals
I Standardized residual plot of two models
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Model Diagnostics via Residuals

I The Independent model has increasing residuals as blood
pressure increases, a pattern like this breaks our assumption
that residuals are normally distributed with mean of 0 and
variance of 1.

I The residuals shows that the Independent model does not seem
to be a good model

I However, the Linear Logit model appears to have no pattern
throughout the residual plot and appears to be a good model



Newton Raphson Algorithm

I An iterative method for solving nonlinear equations
I General steps:

I 1. initial guess for the solution
I 2. approximate the function locallly and find maximum
I 3. the maximum becomes the next guess
I 4. repeat steps 2 and 3 until convergence

I Recall the solution to the estimating equations:

∂L(β)
∂β

= 0

µT = (∂L(β)
∂β1

, ...,
∂L(β)
∂βp

)

H = (∂
2L(β)
∂βi∂βj

), ∀ i , j = 1, 2, ..., p

I where H is Hessian matrix, also called observed information.



Newton Raphson Algorithm

I We are trying to maximize L(β) through this iterative process
I starting with t = 1

µ(t) = µ(β(t))
H(t) = H(β(t))

I where β(t) is our tth guess of β



Newton Raphson Algorithm

I Let µ(t) and H(t) be µ and H evaluated at β(t).
I According to Taylor series expansion,

L(β) ≈ L(β(t))+µ(t)T (β−β(t))+ 1
2(β−β(t))T H(t)(β−β(t))

I Solve ∂L(β)/∂β ≈ µ(t) + H(t)(β − β(t)) = 0, we get

β(t+1) = β(t) − (H(t))−1µ(t)



Fisher Scoring Method

I Fisher scoring is an alternative iterative method for solving
likelihood equations.

I Use the expected value of Hessian matrix, called the expected
information, denoted as J .

J = (−E (∂
2L(β)
∂βi∂βj

)) ∀ i , j = 1, 2, ..., p

β(t+1) = β(t) − (J (t))−1µ(t)



Inference for GLMs

I The curvature of our likelihood function determines the
uncertainty/information about a parameter

I Classical/Frequentist inference assumes under certain regularity
conditions, that parameters follows Multivariate Normal
distribution centered at β̂MLE with asymptotic covariance
approximately by H−1 or J .

I for confidence interval:

β̂ ∼ N(β̂MLE , SE (β̂MLE ))

I for hypothesis testing:

β̂MLE ∼ N(β̂0, SE (β̂MLE ))



Inference for GLMs

I Bayesian inference
I Sample directly from posterior multivariate distribution and

calculate the credible sets.

I Likelihood based inference
I Similarly, directly calculate confidence intervals from likelihood

function.



Inference for GLMs

I SE and CI for GLMs (Frequentist edition)
I 95% CI for β:

β̂ ± 1.96SE (β̂)
I 95% CI for logit(µi):

logit(µi) = α+ βxi

⇒ Var(logit(µ̂i)) = Var(α̂+ β̂xi)
= Var(α̂) + x2

i Var(β̂) + 2Cov(α̂, β̂)
⇒ CI : logit(µ̂i)± 1.96SE (logit(µ̂i))

I We can get the 95% CI for µi with Delta method and the CI
for logit(µ̂i).


