
Lecture 7: GLMs: Score equations,
Residuals

Author: Nick Reich / Transcribed by Bing Miu and Yukun Li

Course: Categorical Data Analysis (BIOSTATS 743)

Made available under the Creative Commons Attribution-ShareAlike 4.0 International License.

http://nickreich.github.io/cda
http://creativecommons.org/licenses/by-sa/4.0/


Likelihood Equations for GLMs

I The GLM likelihood function is given as follows:

L(
⇀
β ) =

∑
i
log(f (yi |θi , φ))

=
∑

i

{yiθi − b(θi)
a(φ) + C(yi , φ)

}
=
∑

i

yiθi − b(θi)
a(φ) +

∑
i
C(yi , φ)

I φ is a dispersion parameter. Not indexed by i , assumed to be
fixed

I θi contains β, from ηi
I C(yi , φ) is from the random component.



Score Equations
I Taking the derivative of the log likelihood function, set it equal

to 0
∂L(

⇀
β )

∂βj
=
∑

i

∂Li
∂βj

= 0, ∀j

I Since ∂Li
∂θi

= (yi−µi )
a(φ) , µi = b′(θi), Var(Yi) = b′′(θi)a(φ), and

ηi =
∑

j βjxij

0 =
∑

i

∂Li
∂βj

=
∑

i

yi − µi
a(φ)

a(φ)
Var(Yi)

∂µi
∂ηi

xij

=
∑

i

(yi − µi)xij
Var(Yi)

∂µi
∂ηi

I V (θ) = b′′(θ), b′′(θ) is the variance function of the GLM.
I µi = E [Yi |xi ] = g−1(Xiβ). These functions are typically

non-linear with respect to β’s, thus require iterative
computation solutions.



Example: Score Equation from Binomial GLM (Ch5.5.1)
Y~ Binomial(ni , πi)

I The joint probability mass function:

N∏
i=1

π(xi)yi [1− π(xi)]ni−yi

I The log likelihood:

L(β) =
∑

j

(∑
i
yixij

)
βj −

∑
i
ni log

[
1 + exp

(∑
j
βjxij

)]
I The score equation:

∂L(
⇀
β )

∂βj
=
∑

i
(yi − ni π̂i)xij note that π̂i = eXiβ

1 + eXiβ

.



Asymptotic Covariance of β̂:

I The likelihood function determines the asymptotic covariance
of the ML estimate for β̂.

I Given the information matrix, I with hj elements:

I = E
[−∂2L(

⇀
β )

∂βhβj

]
=

N∑
i=1

xihxij
Var(Yi)

(∂µi
∂ηi

)2

where wi denotes

wi = 1
Var(Yi)

(∂µi
∂ηi

)2



Asymptotic Covariance Matrix of β̂:

I The information matrix, I is equivalent to:
I =

∑N
i=1 xihxijwi = XTWX

I W is a diagonal matrix with wi as the diagonal element. In
practice, W is evulated at β̂MLE and depdent on the link
function

I The square root of the main diagonal elements of (XTWX )−1

are estimated standard errors of β̂



Analogous to SLR

SLR GLM

Var(β̂i) σ̂2∑N
i=1(xi−x̄)2

the i th main diagnal
element of (XTWX )−1

Cov(β̂i) σ̂2(XTX )−1 (XTWX )−1



Residual and Diagnostics

I Deviance Tests
I Measure of goodness of fit in GLM based on likelihood
I Most useful as a comparison between models (used as a

screening method to identify important covariates)
I Use the saturated model as a baseline for comparison with other

model fits
I For Poisson or binomial GLM: D = −2[L(µ̂|y)− L(y |y)].

I Example of Deviance

Model D((y , µ̂) )

Gaussian
∑

(Yi − µ̂i)2

Poisson 2
∑

(yi ln( yi
µ̂i

)− (yi − µ̂i))
Bionomial 2

∑
(yi ln( yi

µ̂i
)+(ni−yi)ln( ni−yi

ni−µ̂i
))



Deviance tests for nested models
I Consider two models, M0 with fitted values µ̂0 and M1 with

fitted values µ̂1:
I M0 is nested within M1

ηµ1
1 = β0 + β1X11 + β2X12

ηµ0
0 = β0 + β1X11

I Simpler models have smaller log likelihood and larger deviance:
L(µ̂0|y) ≤ L(µ̂1|y) and D(y |µ̂1) ≤ D(y |µ̂0).

I The likelihood-ratio statistic comparing the two models is the
difference between the deviances.

−2[L(µ̂0|y)− L(µ̂1|y)]
= −2[L(µ̂0|y)− L(y |y)]− {−2[L(µ̂1|y)− L(y |y)]}
= D(y |µ̂0)− D(y |µ̂1)



Hypothesis test with differences in Deviance

I H0 : βi1 = ... = βij = 0, fit a full and reduced model
I Hypothesis test with difference in deviance as test statistics. df

is the number of parameter different between µ1 and µ0

D(y |µ̂0)− D(y |µ̂1) ∼ χ2
df

I Reject H0 if the the chi-square calculated value is larger than
χ2

df ,1−α, where df is the number of parameters difference
between µ0 and µ1.



Residual Examinations

I Pearson residuals :
ep

i = y−µ̂i√
V (µ̂i )

, where µi = g−1(ηi) = g−1(Xiβ)

I Deviance residuals :
ed

i = sign(yi − µ̂i)
√
di , where di is the deviance contribution of

ith obs. and sign(x) =
{
1 x > 0
−1 x ≤ 0

I Standardized residuals:
ri = ei√

(1−ĥi )
, where ei = y−µ̂i√

V (µ̂i )
, ĥ1 is the measure of

leverage, and ri ∼= N(0, 1)



Residual Plot
Problem: Residual plot is hard to interpret for logistic regression
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Binned Residual Plot

I Group observations into ordered groups (by xj , ŷ or xij), with
equal number of observations per group.

I Compute group-wise average for raw residuals
I Plot the average residuals vs predicted value. Each dot

represent a group.
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Binned Residual Plot (Part 2)
I Red lines indicate ± 2 standard-error bounds, within which one

would expect about 95% of the binned residuals to fall.
I R function avaiable.

linrary(arm)
binnedplot(x ,y, nclass...)
# x <- Expected values. # y <- Residuals values.
# nclass <- Number of bins.
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Binned Residual Plot (Part 3)

I In practice may need to fiddle with the number of observations
per group. Default will take the value of nclass according to
the n such that:
– if n ≥ 100, nclass = floor(sqrt(length(x)));
– if 10 < n < 100, nclass = 10;
– if n < 10, nclass = floor(n/2).



Ex: Binned Residual Plot with different bin sizes
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