Lecture 7: GLMs: Score equations, Residuals

Author: Nick Reich / Transcribed by Bing Miu and Yukun Li

Course: Categorical Data Analysis (BIOSTATS 743)

Likelihood Equations for GLMs

▶ The GLM likelihood function is given as follows:

$$L(\overrightarrow{\beta}) = \sum_{i} log(f(y_{i}|\theta_{i},\phi))$$

$$= \sum_{i} \left\{ \frac{y_{i}\theta_{i} - b(\theta_{i})}{a(\phi)} + C(y_{i},\phi) \right\}$$

$$= \sum_{i} \frac{y_{i}\theta_{i} - b(\theta_{i})}{a(\phi)} + \sum_{i} C(y_{i},\phi)$$

- lacktriangledown ϕ is a dispersion parameter. Not indexed by i, assumed to be fixed
- \blacktriangleright θ_i contains β , from η_i
- $C(y_i, \phi)$ is from the random component.

Score Equations

► Taking the derivative of the log likelihood function, set it equal to 0

$$\frac{\partial L(\overline{\beta})}{\partial \beta_j} = \sum_{i} \frac{\partial L_i}{\partial \beta_j} = 0, \forall j$$

Since $\frac{\partial L_i}{\partial \theta_i} = \frac{(y_i - \mu_i)}{\mathsf{a}(\phi)}$, $\mu_i = b'(\theta_i)$, $Var(Y_i) = b''(\theta_i)\mathsf{a}(\phi)$, and $\eta_i = \sum_j \beta_j \mathsf{x}_{ij}$

$$0 = \sum_{i} \frac{\partial L_{i}}{\partial \beta_{j}} = \sum_{i} \frac{y_{i} - \mu_{i}}{a(\phi)} \frac{a(\phi)}{Var(Y_{i})} \frac{\partial \mu_{i}}{\partial \eta_{i}} x_{ij}$$
$$= \sum_{i} \frac{(y_{i} - \mu_{i})x_{ij}}{Var(Y_{i})} \frac{\partial \mu_{i}}{\partial \eta_{i}}$$

- ▶ $V(\theta) = b''(\theta)$, $b''(\theta)$ is the variance function of the GLM.
- ▶ $\mu_i = E[Y_i|x_i] = g^{-1}(X_i\beta)$. These functions are typically non-linear with respect to β 's, thus require iterative computation solutions.

Example: Score Equation from Binomial GLM (Ch5.5.1)

 $Y \sim Binomial(n_i, \pi_i)$

▶ The joint probability mass function:

$$\prod_{i=1}^{N} \pi(x_i)^{y_i} [1 - \pi(x_i)]^{n_i - y_i}$$

► The log likelihood:

$$L(\beta) = \sum_{i} \left(\sum_{i} y_{i} x_{ij} \right) \beta_{j} - \sum_{i} n_{i} log \left[1 + exp \left(\sum_{i} \beta_{j} x_{ij} \right) \right]$$

► The score equation:

$$\frac{\partial L(\overrightarrow{\beta})}{\partial \beta_j} = \sum_i (y_i - n_i \hat{\pi}_i) x_{ij} \qquad \text{note that } \hat{\pi}_i = \frac{e^{X_i \beta}}{1 + e^{X_i \beta}}$$

•

Asymptotic Covariance of $\hat{\beta}$:

- ▶ The likelihood function determines the asymptotic covariance of the ML estimate for $\hat{\beta}$.
- ▶ Given the information matrix, \mathcal{I} with h_i elements:

$$\mathcal{I} = E\left[\frac{-\partial^2 L(\overline{\beta})}{\partial \beta_h \beta_j}\right] = \sum_{i=1}^{N} \frac{x_{ih} x_{ij}}{Var(Y_i)} \left(\frac{\partial \mu_i}{\partial \eta_i}\right)^2$$

where w; denotes

$$w_i = \frac{1}{Var(Y_i)} \left(\frac{\partial \mu_i}{\partial \eta_i}\right)^2$$

Asymptotic Covariance Matrix of $\hat{\beta}$:

 \blacktriangleright The information matrix, ${\cal I}$ is equivalent to:

$$\mathcal{I} = \sum_{i=1}^{N} x_{ih} x_{ij} w_i = X^T W X$$

- ▶ W is a diagonal matrix with w_i as the diagonal element. In practice, W is evulated at $\hat{\beta}^{MLE}$ and depondent on the link function
- ► The square root of the main diagonal elements of $(X^T W X)^{-1}$ are estimated standard errors of $\hat{\beta}$

Analogous to ${\sf SLR}$

	SLR	GLM
$Var(\hat{eta}_i)$	$\frac{\hat{\sigma}^2}{\sum_{i=1}^N (x_i - \bar{x})^2}$	the i^{th} main diagnal element of $(X^T W X)^{-1}$
$Cov(\hat{eta}_i)$	$\hat{\sigma}^2(X^TX)^{-1}$	

Residual and Diagnostics

- Deviance Tests
 - Measure of goodness of fit in GLM based on likelihood
 - Most useful as a comparison between models (used as a screening method to identify important covariates)
 - Use the saturated model as a baseline for comparison with other model fits
 - ▶ For Poisson or binomial GLM: $D = -2[L(\hat{\mu}|y) L(y|y)]$.
- Example of Deviance

Model	$D((y,\hat{\mu})$)
Gaussian	$\sum (Y_i - \hat{\mu}_i)^2$
Poisson	$2\sum(y_i \ln(rac{y_i}{\hat{\mu}_i}) - (y_i - \hat{\mu}_i))$
Bionomial	$2\sum (y_i \ln(\frac{y_i}{\hat{\mu}_i}) + (n_i - y_i) \ln(\frac{n_i - y_i}{n_i - \hat{\mu}_i}))$

Deviance tests for nested models

- ▶ Consider two models, M_0 with fitted values $\hat{\mu}_0$ and M_1 with fitted values $\hat{\mu}_1$:
- $ightharpoonup M_0$ is nested within M_1

$$\begin{split} \eta_1^{\mu_1} &= \beta_0 + \beta_1 X_{11} + \beta_2 X_{12} \\ \eta_0^{\mu_0} &= \beta_0 + \beta_1 X_{11} \end{split}$$

- ▶ Simpler models have smaller log likelihood and larger deviance: $L(\hat{\mu}_0|y) \leq L(\hat{\mu}_1|y)$ and $D(y|\hat{\mu}_1) \leq D(y|\hat{\mu}_0)$.
- ► The likelihood-ratio statistic comparing the two models is the difference between the deviances.

$$-2[L(\hat{\mu}_0|y) - L(\hat{\mu}_1|y)]$$

$$= -2[L(\hat{\mu}_0|y) - L(y|y)] - \{-2[L(\hat{\mu}_1|y) - L(y|y)]\}$$

$$= D(y|\hat{\mu}_0) - D(y|\hat{\mu}_1)$$

Hypothesis test with differences in Deviance

- ▶ $H_0: \beta_{i1} = ... = \beta_{ij} = 0$, fit a full and reduced model
- ▶ Hypothesis test with difference in deviance as test statistics. df is the number of parameter different between μ_1 and μ_0

$$D(y|\hat{\mu}_0) - D(y|\hat{\mu}_1) \sim \chi_{df}^2$$

▶ Reject H_0 if the the chi-square calculated value is larger than $\chi^2_{df,1-\alpha}$, where df is the number of parameters difference between μ_0 and μ_1 .

Residual Examinations

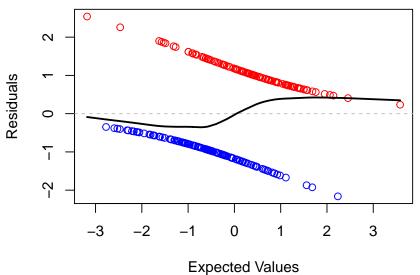
Pearson residuals : $e_i^p = \frac{y - \hat{\mu}_i}{\sqrt{V(\hat{\mu}_i)}}$, where $\mu_i = g^{-1}(\eta_i) = g^{-1}(X_i\beta)$

Deviance residuals : $e_i^d = sign(y_i - \hat{\mu}_i)\sqrt{d_i}$, where d_i is the deviance contribution of i_{th} obs. and $sign(x) = \begin{cases} 1 & x > 0 \\ -1 & x \leq 0 \end{cases}$

Standardized residuals: $r_i = \frac{e_i}{\sqrt{(1-\widehat{h_i})}}$, where $e_i = \frac{y-\hat{\mu}_i}{\sqrt{V(\hat{\mu}_i)}}$, $\widehat{h_1}$ is the measure of leverage, and $r_i \cong N(0,1)$

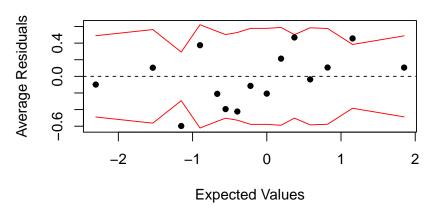
Residual Plot

Problem: Residual plot is hard to interpret for logistic regression



Binned Residual Plot

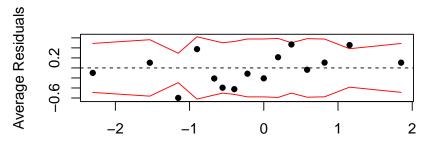
- ▶ Group observations into ordered groups (by x_j , \hat{y} or x_{ij}), with equal number of observations per group.
- ► Compute group-wise average for raw residuals
- ▶ Plot the average residuals vs predicted value. Each dot represent a group.



Binned Residual Plot (Part 2)

- \blacktriangleright Red lines indicate \pm 2 standard-error bounds, within which one would expect about 95% of the binned residuals to fall.
- R function avaiable.

```
linrary(arm)
binnedplot(x ,y, nclass...)
# x <- Expected values. # y <- Residuals values.
# nclass <- Number of bins.</pre>
```



Expected Values

Binned Residual Plot (Part 3)

- ▶ In practice may need to fiddle with the number of observations per group. Default will take the value of nclass according to the n such that:
 - if $n \ge 100$, nclass = floor(sqrt(length(x)));
 - $\text{ if } 10 < n < 100, \ \textit{nclass} = 10;$
 - if n < 10, nclass = floor(n/2).

Ex: Binned Residual Plot with different bin sizes

