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Likelihood Equations for GLMs

» The GLM likelihood function is given as follows:

Z/Og %‘9:,
= Z{y"_') + C(y;,é)}
_Zyl J +chn¢

> ¢ is a dispersion parameter. Not indexed by /, assumed to be
fixed

» 0; contains (3, from n;

» C(y;, ¢) is from the random component.



Score Equations

» Taking the derivative of the log likelihood function, set it equal

to 0
— 0,V
aﬁ, Z aﬁj J
> Since 95 = L) i, — (6;), Var(Y;) = b'(6;)a(@), and
ni = >; Bjxj
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» V(0) = b"(6), b”(0) is the variance function of the GLM.
» ;i = E[Yi|x]] = g 1(XiB). These functions are typically

non-linear with respect to 3's, thus require iterative

computation solutions.




Example: Score Equation from Binomial GLM (Chb.5.1)

Y~ Binomial(n;, ;)

» The joint probability mass function:

H (%)Y [1 = 7w(x)]"
> The log likelihood:

L(B) = Z (Zy,xu) i — Z n;log[l + exp(Z @-x,-jﬂ
j i j
» The score equation:
eXiB

aL(ﬂ) = Z(y, — n,-7i",-)x,-j note that ﬁ',‘ =
op;
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Asymptotic Covariance of B:

» The likelihood function determines the asymptotic covariance
of the ML estimate for 5.

» Given the information matrix, Z with hj elements:

—82L(E)] X X <3Mi)

7-E| BBy 1 = Var(Y:) \on;

where w; denotes

1 Opi
Wi = Var(Y; )(8117;,>



Asymptotic Covariance Matrix of B:

» The information matrix, Z is equivalent to:
=N ximgw = XT WX

» W is a diagonal matrix with w; as the diagonal element. In
practice, W is evulated at BMLE and depdent on the link
function

» The square root of the main diagonal elements of (X ™ WX)~1
are estimated standard errors of B



Analogous to SLR

SLR GLM
2

Var(3;) % the i*" main diagnal
= element of (X7 WX)~!
Cov(B;) F2(XTX)™t (XTwx)™1




Residual and Diagnostics

» Deviance Tests

» Measure of goodness of fit in GLM based on likelihood

» Most useful as a comparison between models (used as a
screening method to identify important covariates)

> Use the saturated model as a baseline for comparison with other
model fits

» For Poisson or binomial GLM: D = —2[L(jily) — L(y|y)].

» Example of Deviance

Model  D((y.7))

Gaussian (Vi — ;)2
Poisson 2
2

Bionomial




Deviance tests for nested models

» Consider two models, My with fitted values [ip and My with
fitted values [i7:

» Mp is nested within My

' = Bo + BiXi1 + BaX12
np° = Po + f1Xu

» Simpler models have smaller log likelihood and larger deviance:
L(foly) < L(faly) and D(y|fa) < D(y|fo).

» The likelihood-ratio statistic comparing the two models is the
difference between the deviances.

—2[L(fw0ly) — L(fuly)]
= —=2[L(fioly) — L(y|y)] = {=2[L(2aly) — L(yI¥)]}
= D(y|fi0) — D(y|f1)



Hypothesis test with differences in Deviance

» Ho:Bj1=...= B =0, fit a full and reduced model
» Hypothesis test with difference in deviance as test statistics. df
is the number of parameter different between p1 and pg

D(y|fi0) — D(y|f1) ~ X5

> Reject Hp if the the chi-square calculated value is larger than
ijfylfa, where df is the number of parameters difference
between o and p.



Residual Examinations

» Pearson re:siduals :
ef = % where p; = g~ (i) = g H(Xip)

» Deviance residuals :
e,d = sign(y; — fi;)\/d;, where d; is the deviance contribution of

1 x>0
itp obs. and sign(x) =
th gn(x) {_1 <0
» Standardized residuals: N
j = ———, wh ;= = hy s th f
fi NG where ¢€; NI is the measure o

leverage, and r; = N(0,1)



Residual Plot

Problem: Residual plot is hard to interpret for logistic regression
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Binned Residual Plot

» Group observations into ordered groups (by x;, ¥ or x;;), with
equal number of observations per group.

» Compute group-wise average for raw residuals

» Plot the average residuals vs predicted value. Each dot
represent a group.
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Binned Residual Plot (Part 2)

» Red lines indicate + 2 standard-error bounds, within which one
would expect about 95% of the binned residuals to fall.
» R function avaiable.

linrary(arm)

binnedplot(x ,y, nclass...)

# ¢ <- Ezpected wvalues. # y <- Residuals walues.
# nclass <- Number of bins.
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Binned Residual Plot (Part 3)

> In practice may need to fiddle with the number of observations
per group. Default will take the value of nclass according to
the n such that:
—if n > 100, nclass = floor(sqrt(length(x)));
—if 10 < n < 100, nclass = 10;
—if n < 10, nclass = floor(n/2).



Ex: Binned Residual Plot with different bin sizes

bin size = 10 bin size = 50
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