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Generalized Linear Models (GLMS)

GLMs are extensions or generalization of linear regression models to
encompass non-normal response distribution and modeling functions
of the mean . - Example for ordinary LM:

Y = Xβ + ε, εi
iid∼ N (0, σ2)

The best fit line on the following plot represents E (Y |X ).
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Overview of GLMs

I Early versions of GLM were used by Fisher in 1920s and GLM
theories were unified in 1970s.

I Fairly flexible parametric framework, good at describing
relationships and associations between variables

I Fairly simple (‘transparent’) and interpretable, but basic GLMs
are not generally seen as the best approach for predictions.

I Both frequentist and Bayesian methods can be used for
parametric and nonparametric models.



GLMs: Parametric vs. Nonparametric Models

I Parametric models: Assumes data follow a fixed distribution
defined by some parameters. GLMs are examples of parametric
models. If assumed model is “close to” the truth, these
methods are both accurate and precise.

I Nonparametric models: Does not assume data follow a fixed
distribution, thus could be a better approach if assumptions are
violated.



Components of GLMs
1. Random Component: Response variable Y with N observations
from a distribution in the exponential family:

I One parameter: f (yi |θi ) = a(θi )b(yi ) exp{yiQ(θi )}
I Two parameters: f (yi |θi ,Φ) = exp{ yi θi −b(θi )

a(Φ) + c(yi ,Φ)},
where Φ is fixed for all observations

I Q(θi ) is the natural parameter

2. Systematic Component: The linear predictor relating ηi to Xi :

I ηi = Xiβ

3. Link Function: Connects random and systematic components

I µi = E (Yi )
I ηi = g(µi ) = g(E (Yi |Xi )) = Xiβ
I g(µi ) is the link function of µi

g(µ) = µ, called the identity link, has ηi = µi (a linear model for a
mean itself).



Example 1: Normal Distribution (with fixed variance)

Suppose yi follows a normal distribution with

I mean µi = ŷi = E (Yi |Xi )

I fixed variance σ2. The pdf is defined as

f (yi |µi , σ
2) = 1√

(2πσ2)
exp{−(yi − µi )2

2σ2 }

= 1√
(2πσ2)

exp{−y2
i

2σ2 }exp{2yiµi
2σ2 }exp{−µ

2
i

2σ2 }

I Where:
I θ = µi
I a(µi ) = exp{−µ2

i
2σ2 }

I b(yi ) = exp{−y2
i

2σ2 }
I Q(µi ) = exp{ µi

σ2 }



Example 2: Binomial Logit for binary outcome data

I Pr(Yi = 1) = πi = E (Yi |Xi )
I

f (yi |θi ) = πyi (1− πi )1−yi = (1− πi )
( πi
1− πi

)yi

= (1− πi ) exp
{

yi log πi
1− πi

}
I Where:

I θ = πi
I a(πi ) = 1− πi
I b(yi ) = 1
I Q(πi ) = log

(
πi

1−πi

)
I The natural parameter Q(πi ) implies the canonical link

function: logit(π) = log
(

πi
1−πi

)



Example 3: Poisson for count outcome data

I Yi ∼ Pois(µi )
I

f (yi |µi ) = e−µiµyi
i

yi !

= e−µi
( 1

yi

)
exp{yi logµi}

I Where:
I θ = µi
I a(µi ) = e−µi

I b(yi ) =
(

1
yi

)
I Q(µi ) = logµi



Deviance
For a particular GLM for observations y = (y1, ..., yN), let L(µ|y)
denote the log-likelihood function expressed in terms of the means
µ = (µ1, ..., µN). The deviance of a Poisson or binomial GLM is

D = −2[L(µ̂|y)− L(y |y)]

I L(µ̂|y) denotes the maximum of the log likelihood for y1, ..., yn
expressed in terms of µ̂1, ..., µ̂n

I L(y |y) is called a saturated model (a perfect fit where µ̂i = yi ,
representing “best case” scenario). This model is not useful,
since it does not provide data reduction. However, it serves as
a baseline for comparison with other model fits.

I Relationship with LRTs: This is the likelihood-ratio statistic for
testing the null hypothesis that the model holds against the
general alternative (i.e., the saturated model)



Logistic Regression

For “simple” one predictor case where Yi ∼ Bernoulli(πi ) and
Pr(Yi = 1) = πi :

logit(πi ) = log
(

πi
1− πi

)
= logit(Pr(Yi = 1))
= logit(E [Yi ])
= g(E [Yi ])
= Xβ
= β0 + βixi ,

which implies Pr(Yi = 1) = eXβ

1+eXβ .

I g does not have to be a linear function (linear model means
linear with respect to β).



Logistic Regression (Cont.)

The graphs below illustrate the correspondence between the linear
systematic component and the logit link. The logit transformation
restricts the range Yi to be between 0 and 1.
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Example: Linear Probability vs. Logistic Regression Models

I For a binary response, the linear probability model
π(x) = α+ β1X1 + ...+ βpXp with independent observations is
a GLM with binomial random component and identity link
function

I Logistic regression model is a GLM with binomial random
component and logit link function



Example: Linear Probability vs. Logistic Regression Models
(Cont.)

An epidemiological survey of 2484 subjects to investigate snoring as
a risk factor for heart disease.
n<-c(1379, 638, 213, 254)
snoring<-rep(c(0,2,4,5),n)
y<-rep(rep(c(1,0),4),c(24,1355,35,603,21,192,30,224))



Example: Linear Probability vs. Logistic Regression Models
(Cont.)

library(MASS)
logitreg <- function(x, y, wt = rep(1, length(y)),

intercept = T, start = rep(0, p), ...)
{

fmin <- function(beta, X, y, w) {
p <- plogis(X %*% beta)
-sum(2 * w * ifelse(y, log(p), log(1-p)))

}
gmin <- function(beta, X, y, w) {

eta <- X %*% beta; p <- plogis(eta)
t(-2 * (w *dlogis(eta) * ifelse(y, 1/p, -1/(1-p))))%*% X

}
if(is.null(dim(x))) dim(x) <- c(length(x), 1)
dn <- dimnames(x)[[2]]
if(!length(dn)) dn <- paste("Var", 1:ncol(x), sep="")
p <- ncol(x) + intercept
if(intercept) {x <- cbind(1, x); dn <- c("(Intercept)", dn)}
if(is.factor(y)) y <- (unclass(y) != 1)
fit <- optim(start, fmin, gmin, X = x, y = y, w = wt, ...)
names(fit$par) <- dn
invisible(fit)

}
logit.fit<-logitreg(x=snoring, y=y, hessian=T, method="BFGS")
logit.fit$par

## (Intercept) Var1
## -3.866245 0.397335

- Logistic regression model fit: logit[π̂(x)]= - 3.87 + 0.40x



Example: Linear Probability vs. Logistic Regression Models
(Cont.)

lpmreg <- function(x, y, wt = rep(1, length(y)),
intercept = T, start = rep(0, p), ...)

{
fmin <- function(beta, X, y, w) {

p <- X %*% beta
-sum(2 * w * ifelse(y, log(p), log(1-p)))

}
gmin <- function(beta, X, y, w) {

p <- X %*% beta;
t(-2 * (w * ifelse(y, 1/p, -1/(1-p))))%*% X

}
if(is.null(dim(x))) dim(x) <- c(length(x), 1)
dn <- dimnames(x)[[2]]
if(!length(dn)) dn <- paste("Var", 1:ncol(x), sep="")
p <- ncol(x) + intercept
if(intercept) {x <- cbind(1, x); dn <- c("(Intercept)", dn)}
if(is.factor(y)) y <- (unclass(y) != 1)
fit <- optim(start, fmin, gmin, X = x, y = y, w = wt, ...)
names(fit$par) <- dn
invisible(fit)

}
lpm.fit<-lpmreg(x=snoring, y=y, start=c(.05,.05), hessian=T, method="BFGS")
lpm.fit$par

## (Intercept) Var1
## 0.01724645 0.01977784

- Linear probability model fit: π̂(x) = 0.0172 + 0.0198x



Example: Linear Probability vs. Logistic Regression Models
(Cont.)



Coefficient Interpretation in Logistic Regression

Our goal is to say in words what βj is. Consider

logit(Pr(Yi = 1)) = β0 + β1X1i + β2X2i + ...

I The logit function at Xi = k and at one-unit increase k + 1 are
given by:

logit(Pr(Yi = 1|X1 = k,X2 = z)) = β0 + β1k + β2z

logit(Pr(Yi = 1|X1 = k + 1,X2 = z)) = β0 + β1(k + 1) + β2z



Coefficient Interpretation in Logistic Regression (Cont.)

I Subtracting the first equation from the second:

log [odds(πi |X1 = k+1,X2 = z)]−log [odds(πi |X1 = k,X2 = z)] = β1

I The difference can be expressed as

log
[odds(πi |Xi = k + 1,X2 = z)

odds(πi |Xi = k,X2 = z)

]
= log odds ratio

I We can write log OR = β1 or log OR = eβ1 .



Coefficient Interpretation in Logistic Regression (Cont.)

I For continuous Xi : For every one-unit increase in Xi , the
estimated odds of outcome changes by a factor of eβ1 or by
[(eβ1 − 1)× 100]%, controlling for other variables

I For categorical Xi : Group Xi has eβ1 times the odds of
outcome compared to group Xj , controlling for other variables
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