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Generalized Linear Models (GLMS)

GLMs are extensions or generalization of linear regression models to
encompass non-normal response distribution and modeling functions
of the mean . - Example for ordinary LM:

Y = X3 +¢, e,-';'\'czl (0,02)

The best fit line on the following plot represents E(Y|X).
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Overview of GLMs

» Early versions of GLM were used by Fisher in 1920s and GLM
theories were unified in 1970s.

> Fairly flexible parametric framework, good at describing
relationships and associations between variables

» Fairly simple (‘transparent’) and interpretable, but basic GLMs
are not generally seen as the best approach for predictions.

» Both frequentist and Bayesian methods can be used for
parametric and nonparametric models.



GLMs: Parametric vs. Nonparametric Models

» Parametric models: Assumes data follow a fixed distribution
defined by some parameters. GLMs are examples of parametric
models. If assumed model is “close to” the truth, these
methods are both accurate and precise.

» Nonparametric models: Does not assume data follow a fixed
distribution, thus could be a better approach if assumptions are
violated.



Components of GLMs
1. Random Component: Response variable Y with N observations

from a distribution in the exponential family:

» One parameter: f(y;|0;) = a(0;)b(y;) exp{y:Q(6i)}

» Two parameters: f(y;|0;, ) = exp{y’e (dt;)(e) + c(yi, )},
where ® is fixed for all observations

» Q(6;) is the natural parameter

2. Systematic Component: The linear predictor relating n; to X;:

> ni = X8
3. Link Function: Connects random and systematic components
> pi = E(Y;)

> i = g(wi) = g(E(Yi X)) = X8
» g(u;) is the link function of u;

g(u) = p, called the identity link, has 7; = p; (a linear model for a
mean itself).



Example 1: Normal Distribution (with fixed variance)

Suppose y; follows a normal distribution with
> mean u; = §; = E(Yi|X;)

» fixed variance o2. The pdf is defined as
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» Where:
> 0= p;
> a(u) = exp{ 34}

> b(y;) = exp{ 3%
> Q) = exp{ 4}




Example 2: Binomial Logit for binary outcome data

> Pr(Y;=1)=m = E(Y{|Xi)

>
f —v: i Yi
Flald) = /(1= m)' ™ = (1= m) (; =)
i
=(1—m;)exp {y,- log 1= m}
> Where:
> 0=
> a(m)=1-—m;
> b(y;) =1
> Q(mi) = log (1_7

» The natural parameter Q(7;) implies the canonical link
function: logit(m) = Iog(1 m)




Example 3: Poisson for count outcome data

» Y; ~ Pois(u;)
>
e Mi'u{i
f(.yl|lu’l) = A
;!
=e M l exp{y; log 11}
e "
> Where:
’ 9 = /’Ll'
> a(p) =et
> b(v) = (%)

> Q(ui) = log pi



Deviance

For a particular GLM for observations y = (y1, ..., yn), let L(u|y)
denote the log-likelihood function expressed in terms of the means
p = (p1, .., upy). The deviance of a Poisson or binomial GLM is

D = —2[L(aly) — L(yly)]

» L(f1]y) denotes the maximum of the log likelihood for y1, ..., y,
expressed in terms of i1, ..., [ip

» L(yly) is called a saturated model (a perfect fit where (; = y;,
representing “best case” scenario). This model is not useful,
since it does not provide data reduction. However, it serves as
a baseline for comparison with other model fits.

» Relationship with LRTs: This is the likelihood-ratio statistic for
testing the null hypothesis that the model holds against the
general alternative (i.e., the saturated model)



Logistic Regression

For “simple” one predictor case where Y; ~ Bernoulli(m;) and
Pr(Y;=1) =

logit(r;) = log ( il )

1 — T
= logit(Pr(Y; = 1))
= logit(E[Yi])
= g(E[Yi])
= Xp
= Bo + Bixi,

which implies Pr(Y; =1) = 1_T_)S<ﬂ'

» g does not have to be a linear function (linear model means
linear with respect to f3).



Logistic Regression (Cont.)

The graphs below illustrate the correspondence between the linear
systematic component and the logit link. The logit transformation
restricts the range Y; to be between 0 and 1.
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Example: Linear Probability vs. Logistic Regression Models

» For a binary response, the linear probability model
m(x) = o+ P1.X1 + ... + Bp X, with independent observations is
a GLM with binomial random component and identity link
function

» Logistic regression model is a GLM with binomial random
component and logit link function



Example: Linear Probability vs. Logistic Regression Models
(Cont.)

An epidemiological survey of 2484 subjects to investigate snoring as

a risk factor for heart disease.
n<-c(1379, 638, 213, 254)

snoring<-rep(c(0,2,4,5) ,n)
y<-rep(rep(c(1,0),4),c(24,1355,35,603,21,192,30,224))

TABLE 4.2 Relationship between Snoring and Heart Disease

Heart Disease

Proportion Linear Logit
Snoring Yes No Yes Fit” Fit*
Never 24 1355 0.017 0.017 0.021
Occasionally 35 603 0.055 0.057 0.044
Nearly every night 21 192 0.099 0.096 0.093
Every night 30 224 0.118 0.116 0.132

“Model fits refer to proportion of yes responses.
Source: P. G. Norton and E. V. Dunn, British Med. J. 291: 630-632 (1985), BMJ Publishing
Group.



Example: Linear Probability vs. Logistic Regression Models
(Cont.)

library (MASS)
logitreg <- function(x, y, wt = rep(1, length(y)),
intercept = T, start = rep(0, p), ...)
{
fmin <- function(beta, X, y, w) {
p <- plogis(X %*% beta)
-sum(2 * w * ifelse(y, log(p), log(i-p)))
}
gmin <- function(beta, X, y, w) {
eta <- X %xJ, beta; p <- plogis(eta)
t(-2 * (w *dlogis(eta) * ifelse(y, 1/p, -1/(1-p))))%*% X
}
if (is.null(dim(x))) dim(x) <- c(length(x), 1)
dn <- dimnames(x) [[2]]
if (!length(dn)) dn <- paste("Var", 1:ncol(x), sep="")
p <- ncol(x) + intercept
if (intercept) {x <- cbind(1, x); dn <- c("(Intercept)", dn)}
if (is.factor(y)) y <- (unclass(y) != 1)
fit <- optim(start, fmin, gmin, X = x, y =y, w = wt, ...)
names (fit$par) <- dn
invisible(fit)
}
logit.fit<-logitreg(x=snoring, y=y, hessian=T, method="BFGS")
logit.fit$par

## (Intercept) Vari
## -3.866245 0.397335

- Logistic regression model fit: logit[#(x)]= - 3.87 + 0.40x



Example: Linear Probability vs. Logistic Regression Models
(Cont.)

lpmreg <- function(x, y, wt = rep(1, length(y)),
intercept = T, start = rep(0, p), ...)
{
fmin <- function(beta, X, y, w) {
p <- X %*J beta
-sum(2 * w * ifelse(y, log(p), log(1-p)))
}
gmin <- function(beta, X, y, w) {
p <- X *% beta;
t(-2 * (w * ifelse(y, 1/p, -1/(1-p))))%*% X
}
if(is.null(dim(x))) dim(x) <- c(length(x), 1)
dn <- dimnames(x) [[2]]
if (!length(dn)) dn <- paste("Var", 1:ncol(x), sep="")
p <- ncol(x) + intercept
if (intercept) {x <- cbind(1, x); dn <- c("(Intercept)", dn)}
if(is.factor(y)) y <- (unclass(y) != 1)
fit <- optim(start, fmin, gmin, X = x, y =y, w = wt, ...)
names (fit$par) <- dn
invisible(fit)
s
1pm.fit<-lpmreg(x=snoring, y=y, start=c(.05,.05), hessian=T, method="BFGS")
1lpm.fit$par

## (Intercept) Vari
## 0.01724645 0.01977784

- Linear probability model fit: #(x) = 0.0172 + 0.0198x



Example: Linear Probability vs. Logistic Regression Models
(Cont.)
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Coefficient Interpretation in Logistic Regression

Our goal is to say in words what 3; is. Consider

logit(Pr(Y; = 1)) = Bo + B1X1i + B2Xoi +

» The logit function at X; = k and at one-unit increase k + 1 are
given by:

Ioglt(Pr( = 1’X1 =k, Xo = Z)) = Bo + b1k + Bz
logit(Pr(Yi =1|X1 =k+1,X2 =2)) = o+ f1(k + 1) + f2z



Coefficient Interpretation in Logistic Regression (Cont.)

» Subtracting the first equation from the second:

log[odds(mi| X1 = k+1, Xo = z)]—log[odds(mi| X1 = k, Xo = z)] = 1
» The difference can be expressed as

OddS(W;’X; =k+1,X = Z)
OddS(W,"X; = k,Xz = Z)

= log odds ratio

» We can write log OR = 1 or log OR = e”1.



Coefficient Interpretation in Logistic Regression (Cont.)

Log-odds scale, logit(T)
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For continuous X;: For every one-unit increase in X, the
estimated odds of outcome changes by a factor of €1 or by
[(e” — 1) x 100]%, controlling for other variables

For categorical X;: Group X; has eP1 times the odds of
outcome compared to group Xj, controlling for other variables
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