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Likelihood Ratio Confidence Intervals

Motivating Example: Poisson Sample-Mean Estimation (1-parameter Poisson Mean)

• The probability mass function (pmf) for the Poisson distribution is defined as:

p(y|µ) = e−µµy

y! , y = 0, 1, ... (non-negative integers)

with E(Y ) = V(Y ) = µ

• Given observations y1, y2, ..., yn, assuming yi
iid∼ Poisson(µ), the log-likelihood is defined as:

L(µ|y) = log
(

n∏
i=1

e−µµyi

yi!

)
= log

(
e−nµµ

∑n

i=1
yi∏n

i=1 yi!

)

= −nµ+ log(µ)
n∑
i=1

yi + C

where C =
∏n
i=1 yi! is a constant.

LR CI’s - Motivating Example Cont’d

L(µ|y) ∝ −nµ+ log(µ)
n∑
i=1

yi

• Note that taking the first derivative and setting equal to zero provides us the MLE for the data:

µ̂ = ȳ = 1
n

n∑
i=1

yi

• Let ỹ = (2, 2, 3)T . Then the log-likelihood is

L(µ|ỹ) ∝ −3µ+ 7 log(µ)

maximized at µ̂ = 7/3.
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LR CI’s - Visualization of this likelihood
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LR CI’s - A Few Notes

• Each point on this curve represents a “fit” to the data.

• In general, adding more data implies that the likelihood is going to be lower.

• Likelihoods always need to be relative (i.e. L1 vs. L0).

• Using an absolute scale is not particularly meaningful.

(1− α)% likelihood-based C.I.

Suppose Θ is a set of parameters, and we let Θ or a subset of Θ vary

Heuristic Definition:

• We are interested in the set Θ for which

LRTS(Θ) = −2[L(Θ)− L(Θ̂)] < χ2
df (1− α)

with Θ̂ as the fixed value at the MLE, and the LR test statistic compared to the (1− α)th quantile of
χ2
df

• The set of Θ where this holds is a (1− α)% confidence interval with degrees of freedom equal to the
number of parameters the likelihood is varying over (free parameters)
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LR CI’s - Motivating Example Cont’d

Motivating Example: Poisson Sample-Mean Estimation (1-parameter Poisson Mean)

• Let Θ = µ, then we can define:
LRTS(µ) = −2[L(µ)− L(µ̂)]

• Setting α = 0.05, we can define a 95% confidence interval for µ as{
µ : LRTS(µ) < χ2

1(.95)
}

=
{
µ : −2[L(µ)− L(µ̂)] < χ2

1(.95)
}

=
{
µ : L(µ) > L(µ̂)− χ2

1(.95)
2

}

LR CI’s - Motivating Example Cont’d

Using the MLE, µ̂ = 7/3, and the value of the χ2
1(.95) = 3.84, we derive an approximate 95% confidence

interval for µ: {
µ : L(µ) > L(7/3)− 3.84

2

}
≈ {µ : 1.1 ≤ µ ≤ 4.5}
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L = L(mu) − Z/2

L = L(mu)

Bayesian Method for Contingency Tables

Bayesian methods for contingency tables may be a good alternative to small sample-size methods because
there is less reliance on large sample theory...but could be sensitive to prior choice.

• Supplement on impact of priors: See Chapter 3.6.4 in Agresti.
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Beta/Binomial Example - Handedness

Q: Are women and men left-handed at the same rate?

Gender RH LH Total
Men 43 9 n1 = 52

Women 44 4 n2 = 48
Total 77 13 100

In other words:

• Is there a difference in the proportions of men who are left-handed and women who are left-handed?

H0 : Pr(left-handed|male) = Pr(left-handed|female)

• Is the difference between left-handed men and left-handed women equal to zero?

H0 : Pr(left-handed|male)− Pr(left-handed|female) = 0

Beta/Binomial Example - Handedness

When we have 2 × 2 table, the chi-square test for independence is equal to two-sided test for different
proportion.
dat <- matrix(c(43, 9 ,44, 4), ncol =2, byrow = T)
chi <- chisq.test(dat, correct = F)
dif <- prop.test(dat, correct = F)

Tests Test Statistics DF P-vlaue
Chi-square test 1.777 1 0.182
Difference Two proportion 1.777 1 0.182

Beta/Binomial Example - Handedness

• Probability Structure:

– Men who are left-handed: Y1 ∼ Bin(n1, π1)

– Women who are left-handed: Y2 ∼ Bin(n2, π2)

• Observed Data:

– (y1, y2) = (9, 4)
– (n1, n2) = (52, 48)

• Let us assign a Uniform prior onto π1 and π2, such that

– π1 ∼ U(0, 1) (also considered ∼ Beta(1, 1))
– π2 ∼ U(0, 1)

• Because the Beta distribution is a conjugate prior to the Binomial likelihood, the posterior distribution
for pi1 and π2 is

p(π1|y, n) ∼ Beta(y1 + 1, n1 − y1 + 1)

p(π2|y, n) ∼ Beta(y2 + 1, n2 − y2 + 1)
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Bayesian Method - Computational Technique

1. Simulate N independent draws from p(π1|y, n) and p(π2|y, n)

2. Compute θi, i = 1, ..., N

3. Plot empirical posterior

4. Calculate summary statistics

Bayesian Method - Multinomial/Dirichlet

• Suppose y is a vector of counts with number of observations for each possible outcome, j

• Then, the likelihood can be written as

p(y|θ) ∝
k∏
j=1

θyij

where
∑
j θj = 1 and θ is a vector of probabilities for j.

• The conjugate prior distribution is a multivariate generalization of the Beta distribution: The Dirichlet

Bayesian Method - Multinomial/Dirichlet

• We set the Dirichlet distribution as the prior for θ: θ ∼ Dir(α), with pdf:

p(θ|α) ∝
k∏
j=1

θ
αj−1
j

where α is a hyper parameter, and θj > 0,
∑
j θj = 1

• The posterior distribution can then be derived as

p(θ|y) ∼ Dir


α1 + y1
α2 + y2

...
αk + yk


• Plausible “non-informative” priors

– Set αj = 1,∀j gives equal density to any vector θ such that
∑
j θj = 1

– Set αj = 0,∀j (improper prior) gives a uniform distribution in log(θj) (if yi > 0,∀j, we have a
proper posterior)

Multinomial/Dirichlet - Example in R

Adapted from Bayesian Data Analysis 3

• A poll was conducted with n = 1447 participants, with the following results:
– Obama: y1 = 727
– Romney: y2 = 583
– Other: y3 = 137
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• The estimand of interest is θ1 − θ2
• Assuming simple random sampling, we have

(y1, y2, y3) ∼ Multinomial(n,

 θ1
θ2
θ3

)

• We now apply the same computational technique as in the univariate case. . .

Multinomial/Dirichlet - Example in R

#data
y <- c(727, 583, 137)

#"uniform" hyperparameter
a <- c(1,1,1)

#prior
pri <- rdirichlet(100, a)

#Generate Posterior
postr <- rdirichlet(1000, y+a)

Multinomial/Dirichlet - Visualization of Prior
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Multinomial/Dirichlet - Visualization of Prior (3D)
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Multinomial/Dirichlet - Visualization of Posterior
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Multinomial/Dirichlet - Visualization of Posterior (3D)
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Multinomial/Dirichlet - Summary Statistics

poll_diff <- postr[,1]-postr[,2]
hist(poll_diff, main = main)
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Histogram of difference between group 1 and group 2
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Multinomial/Dirichlet - Summary Statistics

### Point Estimates
mean(poll_diff)

## [1] 0.09999157

### P-value
mean(poll_diff >0)

## [1] 1

### 95% CI
quantile(poll_diff, c(.025, .975))

## 2.5% 97.5%
## 0.05538754 0.14811648
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