Intro to Contingency Tables

Author: Nicholas Reich

Course: Categorical Data Analysis (BIOSTATS 743)

Made available under the Creative Commons Attribution-ShareAlike 4.0 International License.

Independence

Definition:

Two categorical variable are independent iff

$$\pi_{ij} = \pi_{i+}\pi_{+j}, \ \forall \ i \in \{1, 2, ... I\} \text{ and } j \in \{1, 2, ... J\}$$

or

$$\mathbb{P}(X = i, Y = j) = \mathbb{P}(X = i)\mathbb{P}(Y = j)$$

Independence implies that the conditional distribution reverts to marginal distribution

$$\pi_{j|i} = \frac{\pi_{ij}}{\pi_{i+}} = \frac{\pi_{i+}\pi_{j+}}{\pi_{i+}} = \pi_{j+}$$

or under the independence assumption

$$\mathbb{P}(Y=j|\ X=i)=\mathbb{P}(Y=j)$$

Testing for independence (Two-way contigency table)

▶ Under $H_0: \pi_{ij} = \pi_{i+}\pi_{+j}, \forall i, j$, the expected cell counts are

 $\mu_{ij} = n\pi_{i+}\pi_{+j}$

• Usually π_{i+} and π_{+j} are unknown. Their MLEs are

$$\hat{\pi}_{i+} = \frac{n_{i+}}{n}, \ \hat{\pi}_{+j} = \frac{n_{+j}}{n}$$

Estimated expected cell counts are

$$\hat{\mu}_{ij} = n\hat{\pi}_{i+}\hat{\pi}_{+j} = \frac{n_{i+}n_{+j}}{n}$$

• Pearson χ^2 statistic:

$$X^{2} = \sum_{i=1}^{I} \sum_{j=1}^{J} = \frac{(n_{ij} - \hat{\mu}_{ij})^{2}}{\mu^{2}}$$

- $\hat{\mu}_{ij}$ requires estimating π_{i+} and π_{+j} which have degrees of freedom I-1 and J-1, respectively. Notice the constraints $\sum_{i} \pi_{i+} = \sum_{j} \pi_{+j} = 1$
- The degrees of freedom is

$$(IJ = 1) - (I - 1) - (J - 1) = (I - 1)(J - 1)$$

•
$$X^2$$
 is asymptotically $\chi^2_{(I-1)(J-1)}$

It is helpful to look at the residuals

$$\{\frac{(O-E)^2}{E}\}$$

The residuals can give useful information about where the model is fitting well or not

Measure of Diagnostic Tests

	Diagnosis	
Disease Status	+	-
D	π_{11}	π_{12}
\overline{D}	π_{21}	π_{22}

• Sensitivity: $\mathbb{P}(+|D) = \frac{\pi_{11}}{\pi_{1+}}$

• Specificity:
$$\mathbb{P}(-|\overline{D}) = \frac{\pi_{22}}{\pi_{2+}}$$

An ideal diagnostic test has high Sensitivity, Specificity

Example:

	Diagnosis	
Disease Status	+	-
D	0.86	0.14
\overline{D}	0.12	0.88

Sensitivity = 0.86

Specificity = 0.88

However, from the clinical point, sensitivity and specificity do not provide useful information. So we introduce Positive Predictive Value and Negative Predictive Value

- Positive predictive value (PPV) = $\mathbb{P}(D|+) = \frac{\pi_{11}}{\pi_{+1}}$
- Negative predictive value (NPV) = $\mathbb{P}(\overline{D}|-) = \frac{\pi_{22}}{\pi_{+2}}$
- Relationship between PPV and sensitivity:

$$\begin{aligned} \mathsf{PPV} &= \mathbb{P}(D|+) = \frac{\mathbb{P}(D \cap +)}{\mathbb{P}(+)} \\ &= \frac{\mathbb{P}(+|D)\mathbb{P}(D)}{\mathbb{P}(+|D)\mathbb{P}(D) + \mathbb{P}(+|\overline{D})\mathbb{P}(\overline{D})} \\ &= \frac{\mathbb{P}(+|D)\mathbb{P}(D)}{\mathbb{P}(+|D)\mathbb{P}(D) + (1 - \mathbb{P}(-|\overline{D}))\mathbb{P}(\overline{D})} \\ &= \frac{\mathrm{Sensitivity} \times \mathrm{Prevalence}}{\mathrm{Sensitivity} \times \mathrm{Prevalence}} \end{aligned}$$

The same example:

	Diagnosis	
Disease Status	+	-
D	0.86	0.14
\overline{D}	0.12	0.88

• If the the prevalence is $\mathbb{P}(D) = 0.02$

►
$$\mathsf{PPV} = \frac{0.86 \times 0.02}{0.86 \times 0.02 + 0.12 \times 0.98} \approx 13\%$$

Notice:

$$\mathsf{PPV} \neq \frac{\pi_{11}}{\pi_{11} + \pi_{21}}$$

▶ This is only true when $\frac{n_1}{n_1+n_2}$ equals the disease prevalence

Comparing two groups

We first consider 2×2 tables. Suppose that the response variable Y has two categories: success and failure. The explanatory variable X has two categories, group 1 and group 2, with fixed sample sizes in each group.

Response Y			
Explanatory X	Success	Failure	Row Total
group 1	$n_{11} = x_1$	$n_{12} = n_1 - x_1$	<i>n</i> ₁
group 2	$n_{21} = x_2$	$n_{22} = n_1 - x_2$	<i>n</i> ₂

The goal is to compare the probability of an outcome (success) of Y across the two levels of X.

Assume: $X_1 \sim bin(n_1, \pi_1), X_2 \sim bin(n_2, \pi_2)$

- difference of proportions
- relative risk
- odds ratio

Difference of Proportions

Response Y			
Explanatory X	Success	Failure	Row Total
group 1	$n_{11} = x_1$	$n_{12} = n_1 - x_1$	<i>n</i> ₁
group 2	$n_{21} = x_2$	$n_{22} = n_1 - x_2$	<i>n</i> ₂

- The difference of proportions of successes is: $\pi_1 \pi_2$
- Comparison on failures is equivalent to comparison on successes:

$$(1 - \pi_1) - (1 - \pi_2) = \pi_2 - \pi_1$$

▶ Difference of proportions takes values in [-1,1]

• The estimate of $\pi_1 - \pi_2$ is $\hat{\pi}_1 - \hat{\pi}_2 = \frac{n_{11}}{n_1} - \frac{n_{21}}{n_2}$

the estimate of the asymptotic standard error:

$$\hat{\sigma}(\hat{\pi}_1 - \hat{\pi}_2) = \left[\frac{\hat{\pi}_1(1 - \hat{\pi}_1)}{n_1} - \frac{\hat{\pi}_2(1 - \hat{\pi}_2)}{n_2}\right]^{1/2}$$

• The statistic for testing $H_0: \pi_1 = \pi_2$ vs. $H_a: \pi_1 \neq \pi_2$

$$Z = (\hat{\pi}_1 - \hat{\pi}_2) / \hat{\sigma} (\hat{\pi}_1 - \hat{\pi}_2)$$

which follows a standard normal distribution (normal + normal = normal)

The CI is given by

$$(\hat{\pi}_1 - \hat{\pi}_2) \pm Z_{\alpha/2} \hat{\sigma} (\hat{\pi}_1 - \hat{\pi}_2)$$

Relative Risk

Definition

$$r=\pi_1/\pi_2$$

- Motivation: The difference between $\pi_1 = 0.010$ and $\pi_2 = 0.001$ is more noteworthy than the difference between $\pi_1 = 0.410$ and $\pi_2 = 0.401$. The "relative risk" (0.010/0.001=10, 0.410/0.401=1.02) is more informative than "difference of proportions" (0.009 for both).
- The estimate of r is

$$\hat{r} = \hat{\pi}_1 / \hat{\pi}_2$$

- The estimator converges to normality faster on the log scale.
- The estimator of log r is

$$\log \hat{r} = \log \hat{\pi}_1 - \log \hat{\pi}_2$$

The asymptotic standard error of $\log \hat{r}$

$$\hat{\sigma}(\log \hat{r}) = (rac{1-\pi_1}{\pi_1 n_1} + rac{1-\pi_2}{\pi_2 n_2})^{1/2}$$

• Delta method: If $\sqrt{n}(\hat{\beta} - \beta_0) \rightarrow N(0, \sigma^2)$, then

$$\sqrt{n}(f(\hat{\beta}) - f(\beta_0)) \rightarrow N(0, [f\prime(\beta_0)]^2 \sigma^2)$$

for any function f satisfying the condition that $f'(\beta)$ exists • Here $\beta = \pi_1$ or π_2 and $f(\beta) = \log(\pi_1)$ or $\log(\pi_1)$ • The CI for $\log \hat{r}$ is

$$\left[\log \hat{r} - Z_{1-\alpha/2}\hat{\sigma}(\log \hat{r}), \log \hat{r} + Z_{1-\alpha/2}\hat{\sigma}(\log \hat{r})\right]$$

$$\left[\exp\{\log \hat{r} - Z_{1-\alpha/2}\hat{\sigma}(\log \hat{r})\}, \exp\{\log \hat{r} + Z_{1-\alpha/2}\hat{\sigma}(\log \hat{r})\}\right]$$

Odds Ratio

Odds in group 1:

$$\phi_1 = \frac{\pi_1}{(1-\pi_1)}$$

- Interpretation: \(\phi 1 = 3\) means a success is three times as likely as a failure in group 1
- Odds ratio:

$$\theta = \frac{\phi_1}{\phi_2} = \frac{\pi_1 / (1 - \pi_1)}{\pi_2 / (1 - \pi_2)} \sim \chi^2$$

Interpretation: θ = 4 means the odds of success in group 1 are four times the odds of success in group 2 The estimate is

$$\hat{\theta} = \frac{n_{11}n_{22}}{n_{12}n_{21}}$$

 $\blacktriangleright \log(\hat{\theta})$ converge to normality much faster than $\hat{\theta}$

• An estimate of asymptotic standard error for $\log(\hat{\theta})$ is

$$\hat{\sigma}(\log \hat{ heta}) = \sqrt{rac{1}{n_{11}} + rac{1}{n_{12}} + rac{1}{n_{21}} + rac{1}{n_{22}}}$$

This formula can be derived using the Delta method Recall $\log \hat{\theta} = \log(\hat{\pi}_1) - \log(1 - \hat{\pi}_1) - \log(\hat{\pi}_2) + \log(1 - \hat{\pi}_2)$ First, $f(\beta) = \log(\hat{\pi}_1) - \log(1 - \hat{\pi}_1)$

$$\sigma = \frac{\pi_1(1 - \pi_1)}{n_1}, \quad f'(\beta) = \frac{1}{\pi_1} + \frac{1}{1 - \pi_1}$$
$$[f'(\beta)]^2 \sigma^2 = \frac{1}{n_1 \pi_1} + \frac{1}{n_1(1 - \pi_1)}$$

The estimate is $\frac{1}{n_{11}} + \frac{1}{n_{12}}$

Similar, when $f(\beta) = \log(\hat{\pi}_2) - \log(1 - \hat{\pi}_2)$

• The Wald CI for $\log \hat{\theta}$ is

$$\log \hat{ heta} \pm Z_{lpha/2} \hat{\sigma}(\log \hat{ heta})$$

 \blacktriangleright Exponentiation of the endpoints provides a confidence interval for $\hat{\theta}$

Relationship between Odds Ratio and Relative Risk

- A large relative risk does not imply large odds ratio
- From the definitions of relative risk and odds ratio, we have

$$heta=rac{\pi_1}{\pi_2}rac{1-\pi_2}{1-\pi_1}= ext{relative risk} imesrac{1-\pi_2}{1-\pi_1}$$

When probabilities π₁ and π₂ (the risk in each row group)are both very small, then the second ratio above ≈ 1. Thus

odds ratio
$$\approx$$
 relative risk

This means when relative risk is not directly estimable, e.g., in case-control studies, and the probabilities π₁ and π₂ are both very small, the relative risk can be approximated by the odds ratio.

Case-Control Studies and Odds Ratio

Consider the case-control study of lung cancer:

	Lung Cancer		
Smoker	Cases	Controls	
Yes	688	650	
No	21	59	
Total	709	709	

- ▶ People are recruited based on lung cancer status, therefore $\mathbb{P}(Y = j)$ is known. However $\mathbb{P}(X = i)$ is unknown
- ▶ Conditional probabilities $\mathbb{P}(X = i | Y = j)$ can be estimated
- ▶ Conditional probabilities $\mathbb{P}(Y = j | X = i)$ cannot be estimated
- Relative risk and difference of proportions cannot be estimated

Odds can be estimated:

$$\begin{aligned} & \mathsf{Odds of lung cancer among smoker} = \frac{\mathbb{P}(\mathsf{Case}|\mathsf{Smoker})}{\mathbb{P}(\mathsf{Control}|\mathsf{Smoker})} \\ &= \frac{\mathbb{P}(\mathsf{Case} \cap \mathsf{Smoker})\mathbb{P}(\mathsf{Smoker})}{\mathbb{P}(\mathsf{Control} \cap \mathsf{Smoker})\mathbb{P}(\mathsf{Smoker})} \\ &= \frac{\mathbb{P}(\mathsf{Case} \cap \mathsf{Smoker})}{\mathbb{P}(\mathsf{Control} \cap \mathsf{Smoker})} \\ &= 688/650 = 1.06 \end{aligned}$$

Odds is irrelevant to the probability of being a smoker
Odds ratio can also be estimated:

$$\theta = \frac{\mathbb{P}(X=1|Y=1)\mathbb{P}(X=2|Y=2)}{\mathbb{P}(X=1|Y=2)\mathbb{P}(X=2|Y=1)} = 2.97$$

The Delta method builds upon the Central Limit Theorem to allow us to examine the convergence of the distribution of a function g of a random variable X.

It is not too complicated to derive the Delta method in the univariate case. We need to use Slutsky's Theorem along the way; it will be helpful to first review ideas of convergence in order to better understand where Slutsky's Theorem fits into the derivation.

Delta Method: Convergence of Random Variables

Consider a sequence of random variables X_1, X_2, \ldots, X_n , where the distribution of X_i may be a function of of *i*.

- ▶ Let $F_n(x)$ be the CDF for X_n and F(x) be the CDF for X. It is said that X_n converges in distribution to X, written $X_n \rightarrow {}^dX$, if $\lim_{n\to\infty} [F_n(x) F(x)] = 0$ for all x where F(x) is continuous.
- ▶ It is said that X_n converges in probability to X, written $X_n \to {}^pX$ if $\lim_{n\to\infty} [X_n X] = 0$.

Note that if $X_n \to {}^pX$, then $F_n(x) \to {}^dF(x)$, since $F_n(x) = P(X_n \le x)$ and $F(x) = P(X \le x)$. (This is not a proof, but an intuition. The Wikipedia article on convergence has a nice proof.)

Delta Method: Slutsky's Theorem and First-Order Taylor Approximation

- ► Recall that Slutsky's Theorem tells us that if some random variable X_n converges in distribution to X and some random variable Y_n converges in probability to c, then X_n + Y_n converges in distribution to X + c and X_nY_n converges in distribution to cX.
- ► Recall that the first-order Taylor approximation of a function g centered at u can be written as g(x) = g'(u)(x u) + g(u) + R(x), where R(x) = ∑_{i=2}ⁿ g⁽ⁱ⁾(u) (x-u)ⁱ/_{i!}.

Delta Method: Hand-wave-y Derivation

Suppose we know that $\sqrt{n}(X_n - \theta) \to {}^d N(0, \sigma^2)$ and we are interested in the behavior of some function $g(X_n)$ as $n \to \infty$. If $g'(\theta)$ exists and is not zero, we can write $g(X_n) \approx g'(\theta)(X_n - \theta) + g(\theta)$ using Taylor's approximation:

$$g(X_n) = g'(\theta)(X_n - \theta) + g(\theta) + \sum_{i=2}^{\infty} g^{(i)}(\theta) \frac{(X_n - \theta)^i}{i!}$$

Delta Method: Hand-wave-y Derivation

Some manipulation gives:

$$\sqrt{n}g(X_n) = \sqrt{n}*g'(\theta)(X_n-\theta) + \sqrt{n}*g(\theta) + \sqrt{n}*\sum_{i=2}^{\infty} g^{(i)}(\theta) \frac{(X_n-\theta)^i}{i!}$$

or, using the definition of R from the previous slide,

$$\sqrt{n}(g(X_n) - g(\theta)) = \sqrt{n} * g'(\theta)(X_n - \theta) + \sqrt{n} * R(X_n)$$

Delta Method: Hand-wave-y Derivation

Since $g'(\theta)$ is a constant with respect to *n* and $\sqrt{n}(X_n - \theta) \rightarrow^d N(0, \sigma^2)$, we have

$$g'(\theta)\sqrt{n}(X_n-\theta) \rightarrow^d N(0,\sigma^2(g'(\theta))^2)$$

It can be shown that the remainder term $R(X_n) \rightarrow^p 0$ (see the Stephens link from McGill below for a proof).

We now have the necessary setup to apply Slutsky's Theorem, and we can conclude that

$$\sqrt{n}(g(X_n) - g(\theta)) \rightarrow^d N(0, \sigma^2(g'(\theta))^2)$$

Delta Method: References

- http://www.stat.rice.edu/~dobelman/notes_papers/math/ TaylorAppDeltaMethod.pdf
- https:
 - //en.wikipedia.org/wiki/Convergence_of_random_variables
- http://www.stat.cmu.edu/~larry/=stat325.01/chapter5.pdf
- https://en.wikipedia.org/wiki/Slutsky%27s_theorem
- http://www.math.mcgill.ca/dstephens/OldCourses/556-2007/ Math556-19-AsympNormal.pdf