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Independence

Definition:
Two categorical variable are independent iff

πij = πi+π+j , ∀ i ∈ {1, 2, ..I} and j ∈ {1, 2, ..J}

or
P(X = i ,Y = j) = P(X = i)P(Y = j)

Independence implies that the conditional distribution reverts to
marginal distribution

πj|i = πij
πi+

= πi+πj+
πi+

= πj+

or under the independence assumption

P(Y = j | X = i) = P(Y = j)



Testing for independence (Two-way contigency table)
I Under H0 : πij = πi+π+j , ∀ i , j , the expected cell counts are

µij = nπi+π+j

I Usually πi+ and π+j are unknown. Their MLEs are

π̂i+ = ni+
n , π̂+j = n+j

n

I Estimated expected cell counts are

µ̂ij = nπ̂i+π̂+j = ni+n+j
n

I Pearson χ2 statistic:

X 2 =
I∑

i=1

J∑
j=1

= (nij − µ̂ij)2

µ2



I µ̂ij requires estimating πi+ and π+j which have degrees of
freedom I − 1 and J − 1, respectively. Notice the constraints∑

i πi+ = ∑
j π+j = 1

I The degrees of freedom is

(IJ = 1)− (I − 1)− (J − 1) = (I − 1)(J − 1)

I X 2 is asymptotically χ2
(I−1)(J−1)

I It is helpful to look at the residuals

{(O − E )2

E }

The residuals can give useful information about where the
model is fitting well or not



Measure of Diagnostic Tests

Diagnosis
Disease Status + -

D π11 π12
D π21 π22

I Sensitivity: P(+|D) = π11
π1+

I Specificity: P(−|D) = π22
π2+

I An ideal diagnostic test has high Sensitivity, Specificity



Example:
Diagnosis

Disease Status + -
D 0.86 0.14
D 0.12 0.88

I Sensitivity = 0.86

I Specificity = 0.88

However, from the clinical point, sensitivity and specificity do not
provide useful information. So we introduce Positive Predictive
Value and Negative Predictive Value



I Positive predictive value (PPV) = P(D|+) = π11
π+1

I Negative predictive value (NPV) = P(D|−) = π22
π+2

I Relationship between PPV and sensitivity:

PPV = P(D|+) = P(D ∩+)
P(+)

= P(+|D)P(D)
P(+|D)P(D) + P(+|D)P(D)

= P(+|D)P(D)
P(+|D)P(D) + (1− P(−|D))P(D)

= Sensitivity× Prevalence
Sensitivity× Prevalence + (1− Specificity)× (1− Prevalence)



The same example:

Diagnosis
Disease Status + -

D 0.86 0.14
D 0.12 0.88

I If the the prevalence is P(D) = 0.02
I PPV = 0.86×0.02

0.86×0.02+0.12×0.98 ≈ 13%
I Notice:

PPV 6= π11
π11 + π21

I This is only true when n1
n1+n2

equals the disease prevalence



Comparing two groups
We first consider 2 × 2 tables. Suppose that the response variable
Y has two categories: success and failure. The explanatory variable
X has two categories, group 1 and group 2, with fixed sample sizes
in each group.

Response Y
Explanatory X Success Failure Row Total

group 1 n11 = x1 n12 = n1 − x1 n1
group 2 n21 = x2 n22 = n1 − x2 n2

The goal is to compare the probability of an outcome (success) of Y
across the two levels of X.
Assume:X1 ∼ bin(n1, π1),X2 ∼ bin(n2, π2)

I difference of proportions
I relative risk
I odds ratio



Difference of Proportions

Response Y
Explanatory X Success Failure Row Total

group 1 n11 = x1 n12 = n1 − x1 n1
group 2 n21 = x2 n22 = n1 − x2 n2

I The difference of proportions of successes is: π1 − π2
I Comparison on failures is equivalent to comparison on

successes:
(1− π1)− (1− π2) = π2 − π1

I Difference of proportions takes values in [−1, 1]



I The estimate of π1 − π2 is π̂1 − π̂2 = n11
n1
− n21

n2
I the estimate of the asymptotic standard error:

σ̂(π̂1 − π̂2) = [ π̂1(1− π̂1)
n1

− π̂2(1− π̂2)
n2

]1/2

I The statistic for testing H0 : π1 = π2 vs. Ha : π1 6= π2

Z = (π̂1 − π̂2)/σ̂(π̂1 − π̂2)

which follows a standard normal distribution (normal + normal
= normal)

I The CI is given by

(π̂1 − π̂2)± Zα/2σ̂(π̂1 − π̂2)



Relative Risk

I Definition
r = π1/π2

I Motivation: The difference between π1 = 0.010 and
π2 = 0.001 is more noteworthy than the difference between
π1 = 0.410 and π2 = 0.401. The “relative risk”
(0.010/0.001=10, 0.410/0.401=1.02) is more informative than
“difference of proportions” (0.009 for both).

I The estimate of r is
r̂ = π̂1/π̂2



I The estimator converges to normality faster on the log scale.
I The estimator of log r is

log r̂ = log π̂1 − log π̂2

The asymptotic standard error of log r̂

σ̂(log r̂) = (1− π1
π1n1

+ 1− π2
π2n2

)1/2

I Delta method: If √n(β̂ − β0)→ N(0, σ2), then
√

n(f (β̂)− f (β0))→ N(0, [f ′(β0)]2σ2)

for any function f satisfying the condition that f ′(β) exists
I Here β = π1 or π2 and f (β) = log(π1) or log(π1)



I The CI for log r̂ is

[log r̂ − Z1−α/2σ̂(log r̂), log r̂ + Z1−α/2σ̂(log r̂)]

I The CI for r̂ is

[exp{log r̂ − Z1−α/2σ̂(log r̂)}, exp{log r̂ + Z1−α/2σ̂(log r̂)}]



Odds Ratio

I Odds in group 1:
φ1 = π1

(1− π1)
I Interpretation: φ1 = 3 means a success is three times as likely

as a failure in group 1
I Odds ratio:

θ = φ1
φ2

= π1 /(1− π1)
π2 /(1− π2) ∼ χ

2

I Interpretation: θ = 4 means the odds of success in group 1 are
four times the odds of success in group 2



I The estimate is
θ̂ = n11n22

n12n21

I log(θ̂) converge to normality much faster than θ̂
I An estimate of asymptotic standard error for log(θ̂) is

σ̂(log θ̂) =
√

1
n11

+ 1
n12

+ 1
n21

+ 1
n22



This formula can be derived using the Delta method Recall
log θ̂ = log(π̂1)− log(1− π̂1)− log(π̂2) + log(1− π̂2)
First, f (β) = log(π̂1)− log(1− π̂1)

σ = π1(1− π1)
n1

, f ′(β) = 1
π1

+ 1
1− π1

[f ′(β)]2σ2 = 1
n1π1

+ 1
n1(1− π1)

The estimate is 1
n11

+ 1
n12

Similar, when f (β) = log(π̂2)− log(1− π̂2)



I The Wald CI for log θ̂ is

log θ̂ ± Zα/2σ̂(log θ̂)

I Exponentiation of the endpoints provides a confidence interval
for θ̂



Relationship between Odds Ratio and Relative Risk

I A large relative risk does not imply large odds ratio
I From the definitions of relative risk and odds ratio, we have

θ = π1
π2

1− π2
1− π1

= relative risk× 1− π2
1− π1

I When probabilities π1 and π2 (the risk in each row group)are
both very small, then the second ratio above ≈ 1. Thus

odds ratio ≈ relative risk

I This means when relative risk is not directly estimable, e.g., in
case-control studies, and the probabilities π1 and π2 are both
very small, the relative risk can be approximated by the odds
ratio.



Case-Control Studies and Odds Ratio

Consider the case-control study of lung cancer:

Lung Cancer
Smoker Cases Controls
Yes 688 650
No 21 59
Total 709 709

I People are recruited based on lung cancer status, therefore
P(Y = j) is known. However P(X = i) is unknown

I Conditional probabilities P(X = i |Y = j) can be estimated
I Conditional probabilities P(Y = j |X = i) cannot be estimated
I Relative risk and difference of proportions cannot be estimated



I Odds can be estimated:

Odds of lung cancer among smoker = P(Case|Smoker)
P(Control|Smoker)

= P(Case ∩ Smoker)P(Smoker)
P(Control ∩ Smoker)P(Smoker)

= P(Case ∩ Smoker)
P(Control ∩ Smoker)

= 688/650 = 1.06

I Odds is irrelevant to the probability of being a smoker
I Odds ratio can also be estimated:

θ = P(X = 1|Y = 1)P(X = 2|Y = 2)
P(X = 1|Y = 2)P(X = 2|Y = 1) = 2.97



Supplementary: Review of the Delta Method

The Delta method builds upon the Central Limit Theorem to allow
us to examine the convergence of the distribution of a function g of
a random variable X .
It is not too complicated to derive the Delta method in the
univariate case. We need to use Slutsky’s Theorem along the way; it
will be helpful to first review ideas of convergence in order to better
understand where Slutsky’s Theorem fits into the derivation.



Delta Method: Convergence of Random Variables

Consider a sequence of random variables X1,X2, . . . ,Xn, where the
distribution of Xi may be a function of of i .

I Let Fn(x) be the CDF for Xn and F (x) be the CDF for X . It is
said that Xn converges in distribution to X , written
Xn → dX , if limn→∞[Fn(x)− F (x)] = 0 for all x where F (x) is
continuous.

I It is said that Xn converges in probability to X , written
Xn → pX if limn→∞[Xn − X ] = 0.

Note that if Xn → pX , then Fn(x)→ dF (x), since
Fn(x) = P(Xn ≤ x) and F (x) = P(X ≤ x). (This is not a proof,
but an intuition. The Wikipedia article on convergence has a nice
proof.)



Delta Method: Slutsky’s Theorem and First-Order Taylor
Approximation

I Recall that Slutsky’s Theorem tells us that if some random
variable Xn converges in distribution to X and some random
variable Yn converges in probability to c, then Xn + Yn
converges in distribution to X + c and XnYn converges in
distribution to cX .

I Recall that the first-order Taylor approximation of a
function g centered at u can be written as
g(x) = g ′(u)(x − u) + g(u) + R(x), where
R(x) = ∑n

i=2 g (i)(u) (x−u)i

i! .



Delta Method: Hand-wave-y Derivation

Suppose we know that √n(Xn − θ)→ dN(0, σ2) and we are
interested in the behavior of some function g(Xn) as n→∞. If
g ′(θ) exists and is not zero, we can write
g(Xn) ≈ g ′(θ)(Xn − θ) + g(θ) using Taylor’s approximation:

g(Xn) = g ′(θ)(Xn − θ) + g(θ) +
∞∑

i=2
g (i)(θ)(Xn − θ)i

i!



Delta Method: Hand-wave-y Derivation

Some manipulation gives:

√
ng(Xn) =

√
n∗g ′(θ)(Xn−θ)+

√
n∗g(θ)+

√
n∗
∞∑

i=2
g (i)(θ)(Xn − θ)i

i!

or, using the definition of R from the previous slide,

√
n(g(Xn)− g(θ)) =

√
n ∗ g ′(θ)(Xn − θ) +

√
n ∗ R(Xn)



Delta Method: Hand-wave-y Derivation

Since g ′(θ) is a constant with respect to n and√
n(Xn − θ)→d N(0, σ2), we have

g ′(θ)
√

n(Xn − θ)→d N(0, σ2(g ′(θ))2)

.
It can be shown that the remainder term R(Xn)→p 0 (see the
Stephens link from McGill below for a proof).
We now have the necessary setup to apply Slutsky’s Theorem, and
we can conclude that

√
n(g(Xn)− g(θ))→d N(0, σ2(g ′(θ))2)

.



Delta Method: References

I http://www.stat.rice.edu/~dobelman/notes_papers/math/
TaylorAppDeltaMethod.pdf

I https:
//en.wikipedia.org/wiki/Convergence_of_random_variables

I http://www.stat.cmu.edu/~larry/=stat325.01/chapter5.pdf
I https://en.wikipedia.org/wiki/Slutsky%27s_theorem
I http://www.math.mcgill.ca/dstephens/OldCourses/556-2007/

Math556-19-AsympNormal.pdf
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