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Independence

Definition:
Two categorical variable are independent iff

7TU = 7TI'+7T+_]'7 V I € {1,27l} andj S {1727‘1}
or
P(X =i,Y =j)=P(X =)P(Y =)

Independence implies that the conditional distribution reverts to
marginal distribution

Ty _ Tk T+
Tit+ i+

or under the independence assumption

P(Y =j| X = i) =P(Y =)



Testing for independence (Two-way contigency table)
» Under Hp : mjj = miym4;,V i,j, the expected cell counts are
Hij = N4 Ty

» Usually iy and 7; are unknown. Their MLEs are

Ao M A My
i+ n s ) n
» Estimated expected cell counts are

N4 N4

Pij = Mg Ty = —

» Pearson x? statistic:



fijj requires estimating ;1 and 74 ; which have degrees of
freedom / — 1 and J — 1, respectively. Notice the constraints

2iTir =27 =1
The degrees of freedom is

(U=1)—(I-1)—(J—-1)= (I - 1)(J - 1)

X2 is asymptotically X%I—l)(J—l)
It is helpful to look at the residuals

(0- EY
==

The residuals can give useful information about where the
model is fitting well or not



Measure of Diagnostic Tests

Diagnosis

Disease Status  + -
D Tl 12
D o1 T2

» Sensitivity: P(+|D) = I
» Specificity: P(—|D) = =22

» An ideal diagnostic test has high Sensitivity, Specificity



Example:

Diagnosis

Disease Status  + -
D 0.86 0.14
D 0.12 0.88

» Sensitivity = 0.86
» Specificity = 0.88
However, from the clinical point, sensitivity and specificity do not

provide useful information. So we introduce Positive Predictive
Value and Negative Predictive Value



» Positive predictive value (PPV) = P(D|+) = -

TH1
> Negative predictive value (NPV) = P(D|-) = 12
> Relationship between PPV and sensitivity:
P(DN+)
PPV =P(D|+) = TP
_ P(+|D)P(D)
~ P(+|D)P(D) + P(+|D)P(D)
P(+[D)P(D)

~ B(+[D)B(D) + (1 — P(~|D))E(D)
Sensitivity x Prevalence

" Sensitivity x Prevalence + (1 — Specificity) x (1 — Prevalence)



The same example:

Diagnosis
Disease Status  + -
D 0.86 0.14
D 0.12 0.88
» If the the prevalence is P(D) = 0.02
_ 0.860.02 N
> PPV = ggsx00010 125008 ~ 13%
» Notice: .
11
PPV £ — 1L
7 11 + 721
» This is only true when —2

ni+n2

equals the disease prevalence



Comparing two groups

We first consider 2 x 2 tables. Suppose that the response variable
Y has two categories: success and failure. The explanatory variable
X has two categories, group 1 and group 2, with fixed sample sizes
in each group.

Response Y
Explanatory X  Success Failure Row Total
group 1 Mmi1=x1 Np2=n-x n
group 2 N1 =xp Ny =n;— X ny

The goal is to compare the probability of an outcome (success) of Y
across the two levels of X.
Assume: X1 ~ bin(ny,m1), X2 ~ bin(ny, m2)

» difference of proportions
> relative risk
» odds ratio



Difference of Proportions

Response Y
Explanatory X  Success Failure Row Total
group 1 Mi1=x1 Np2=n-x n
group 2 M1 =Xy Ny =Ny —Xxp np

» The difference of proportions of successes is: w1 — mp
» Comparison on failures is equivalent to comparison on
successes:
(1—m)—(1—m)=m—m

» Difference of proportions takes values in [—1,1]



» The estimate of 71 — mp is 1] — 7o = ’;—111 — ”7221

> the estimate of the asymptotic standard error:

afn . Al -7 mo(l -7
0'(771—7T2):[ 1( n 1)_ 2( o 2)]1/2

» The statistic for testing Hy : m1 = mp vs. H, : 1 # ™
Z = (71 — 72)/6(1 — 72)

which follows a standard normal distribution (normal + normal
= normal)
» The Cl is given by

(71 — 72) £ Zy 26 (71 — 72)



Relative Risk

» Definition
r=m/m

» Motivation: The difference between 71 = 0.010 and
7o = 0.001 is more noteworthy than the difference between
71 = 0.410 and 7 = 0.401. The “relative risk”
(0.010/0.001=10, 0.410/0.401=1.02) is more informative than
“difference of proportions” (0.009 for both).
» The estimate of r is
P=71/fo
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v

v

The estimator converges to normality faster on the log scale.
The estimator of log r is

log ¥ = log 1 — log 72

The asymptotic standard error of log 7

~ ~ 1_7T1 1_7T2 1/2
&(log?) = ( g + p /

Delta method: If \/n(3 — Bo) = N(0, 02), then
Vn(f(B) = (Bo)) = N(O, [f1(o)]*0?)

for any function f satisfying the condition that f/(3) exists
Here = 71 or m and f(3) = log(m1) or log(m1)



» The Cl for log 7 is

[log ? — Zy_o/26(log #),log ¥ + Z;_ 26 (log 7)]

» The Cl for 7 is

[exp{log 7 — Z;_o/>5(log )}, exp{log # + Z1_, /25 (log 7) }]



Odds Ratio

v

Odds in group 1:
1

(1—m)
Interpretation: ¢1 = 3 means a success is three times as likely
as a failure in group 1

$1 =

v

» QOdds ratio:
gt _m/lom)
¢2 w2 [(1—m2)
> Interpretation: 8 = 4 means the odds of success in group 1 are

four times the odds of success in group 2



» The estimate is
f— niingo

n12n21
> log(d) converge to normality much faster than 0

» An estimate of asymptotic standard error for log(f) is

. A 1 1 1 1
G(logl) =/ —+ —+ —+ —
mi o M2 1 N2



This formula can be derived using the Delta method Recall
log 0 = log(#1) — log(1 — #1) — log(#2) + log(1 — #2)
First, f(B) = log(#1) — log(1 — 71)

1-— 1 1

o= T gy o L
n 1 1-— 1
1 n 1

nimy n1(1 — 7T1)

[F1(B)P0” =

1

The estimate is o + s

Similar, when f(3) = log(#2) — log(1 — #2)



» The Wald Cl for log 4 is
log § & Z, /26 (log 0)

» Exponentiation of the endpoints provides a confidence interval
for 0



Relationship between Odds Ratio and Relative Risk

v

A large relative risk does not imply large odds ratio

From the definitions of relative risk and odds ratio, we have

m 1 — o 1—m

0= = relative risk x

T 1l —m — 1

When probabilities 71 and 7 (the risk in each row group)are
both very small, then the second ratio above =~ 1. Thus

odds ratio = relative risk

This means when relative risk is not directly estimable, e.g., in
case-control studies, and the probabilities 1 and 75 are both

very small, the relative risk can be approximated by the odds

ratio.



Case-Control Studies and Odds Ratio

Consider the case-control study of lung cancer:

Lung Cancer
Smoker Cases Controls
Yes 638 650
No 21 59
Total 709 709

> People are recruited based on lung cancer status, therefore
P(Y =) is known. However P(X = i) is unknown
Conditional probabilities P(X = i|Y = j) can be estimated
Conditional probabilities P(Y = j|X = i) cannot be estimated
Relative risk and difference of proportions cannot be estimated

v vy



» Odds can be estimated:

[P(Case|Smoker)

Odds of lung cancer among smoker = [P(Control|Smoker)

_ IP(Case N Smoker)P(Smoker)
~ P(Control N Smoker)P(Smoker)
_ IP(Case N Smoker)

~ P(Control N Smoker)

= 688/650 = 1.06

» Qdds is irrelevant to the probability of being a smoker
» QOdds ratio can also be estimated:

P(X =1|Y = 1)P(X =2|Y =2)

b= B =1y =2)P(X = 2[Y = 1)

=2.97




Supplementary: Review of the Delta Method

The Delta method builds upon the Central Limit Theorem to allow
us to examine the convergence of the distribution of a function g of
a random variable X.

It is not too complicated to derive the Delta method in the
univariate case. We need to use Slutsky’'s Theorem along the way; it
will be helpful to first review ideas of convergence in order to better
understand where Slutsky’s Theorem fits into the derivation.



Delta Method: Convergence of Random Variables

Consider a sequence of random variables X1, X5, ..., X,,, where the
distribution of X; may be a function of of /.

» Let Fp(x) be the CDF for X, and F(x) be the CDF for X. It is
said that X, converges in distribution to X, written
Xn — 99X, if limp_yo0[Fn(x) — F(x)] = 0 for all x where F(x) is
continuous.

> It is said that X, converges in probability to X, written
Xn = PX if limpooo[Xn — X] = 0.

Note that if X, — PX, then F,(x) — ¢F(x), since

Fn(x) = P(X, < x) and F(x) = P(X < x). (This is not a proof,
but an intuition. The Wikipedia article on convergence has a nice
proof.)



Delta Method: Slutsky's Theorem and First-Order Taylor
Approximation

» Recall that Slutsky’s Theorem tells us that if some random
variable X, converges in distribution to X and some random
variable Y, converges in probability to ¢, then X, + Y,
converges in distribution to X + ¢ and XY, converges in
distribution to cX.

» Recall that the first-order Taylor approximation of a
function g centered at u can be written as

g(x) = g/(u )(X — u) —i—g(l u) + R(x), where
R(x) = S7p 80 (u) 5.



Delta Method: Hand-wave-y Derivation

Suppose we know that /n(X, — 6) — 9N(0,02) and we are
interested in the behavior of some function g(X,) as n — oco. If
g/(0) exists and is not zero, we can write

g(Xn) = g1(0)(Xn — 0) + g(0) using Taylor's approximation:

£(X0) = g1(6) (X0 — 6) + & (0 +zg o0



Delta Method: Hand-wave-y Derivation

Some manipulation gives:

Vng(Xn) = /nxg!(0)(Xa—0)+/ng(0) +ﬁ*z g"(9)
or, using the definition of R from the previous slide,

Vn(g(Xn) — g(0)) = v/n*g/(0)(Xs — 0) + vnx R(

Xn)

_6)

il



Delta Method: Hand-wave-y Derivation

Since g/(0) is a constant with respect to n and
Vn(X, — 0) =9 N(0,02), we have

g/(0)v/n(X, — 6) =7 N(0,0°(g7())?)

It can be shown that the remainder term R(X,) — 0 (see the
Stephens link from McGill below for a proof).

We now have the necessary setup to apply Slutsky’s Theorem, and
we can conclude that

Vn(g(Xn) — g(6)) =9 N(0,0%(g(9))?)



Delta Method: References

» http://www.stat.rice.edu/~dobelman/notes_papers/math/
TaylorAppDeltaMethod. pdf

> https:
//en.wikipedia.org/wiki/Convergence_of__random_variables

» http://www.stat.cmu.edu/~larry/=stat325.01/chapterb.pdf

» https://en.wikipedia.org/wiki/Slutsky%27s_theorem

» http://www.math.mcgill.ca/dstephens/OldCourses/556-2007/
Math556-19- AsympNormal.pdf
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