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Contingency Tables (notation)
Imagine we have random variables X and Y . Let X and Y be
categorical variables with I and J categories, respectively. We can
draw a contingency table with i rows and j columns:

Y = 1 Y = 2 · · · Y = i · · · Y = J
X = 1 n11 n12 · · · n1j · · · n1J n1+
X = 2 n21 n22 · · · n2j · · · n2J n2+

... · · · · · · . . . · · · · · · · · ·
...

X = i ni1 ni2 · · · nij · · · niJ ni+
... · · · · · · · · · · · · . . . · · ·

...
X = I nI1 nI2 · · · nIj · · · nIJ nI+

n+1 n+2 · · · n+j · · · n+J n

The generic entry nij denotes the count of observations when X = i
and Y = j . This table also represents the joint distribution of X
and Y when X and Y are categorical.



Contingency Tables (notation and example)

The notation n+j is the sum of the jth column: n+j = q nij over all
i , while ni+ is the sum of the i th row: ni+ = q nij over all j . The
total is simply n = q

ij nij .
Contingency tables are ubiquitous in scientific papers and in the
media. Example:



Contingency Tables - Probabilities
A contingency table can be represented by probabilities as well.
Define fiij to be a the population parameter representing the true
probability of being in the ijth cell - the probability that both X = i
and Y = j . Formally, fiij = Pr(X = i , Y = j), the joint probability
of X and Y for all i = 1, ..., I and j = 1, ..., J .

Y = 1 Y = 2 · · · Y = i · · · Y = J
X = 1 fi11 fi12 · · · fi1j · · · fi1J fi1+
X = 2 fi21 fi22 · · · fi2j · · · fi2J fi2+

... · · · · · · . . . · · · · · · · · ·
...

X = i fii1 fii2 · · · fiij · · · fiiJ fii+
... · · · · · · · · · · · · . . . · · ·

...
X = I fiI1 fiI2 · · · fiIj · · · fiIJ fiI+

fi+1 fi+2 · · · fi+j · · · fi+J fi



Contingency Tables - Marginal Probabilities

We can also use these probabilities to find the marginal probability
distributions of X and Y : fii+ = P(X = i) and fi+j = P(Y = j).

Y = 1 Y = 2 · · · Y = i · · · Y = J
X = 1 fi11 fi12 · · · fi1j · · · fi1J fi1+
X = 2 fi21 fi22 · · · fi2j · · · fi2J fi2+

... · · · · · · . . . · · · · · · · · ·
...

X = i fii1 fii2 · · · fiij · · · fiiJ fii+
... · · · · · · · · · · · · . . . · · ·

...
X = I fiI1 fiI2 · · · fiIj · · · fiIJ fiI+

fi+1 fi+2 · · · fi+j · · · fi+J fi



Contingency Tables - Conditional Probabilities

Finally, we can use our contingency table to find conditional
probabilies - the probability that you are in the jth cell, conditioned
on being in the i th row:

fij|i = fiij
fii+

= Pr(Y = j |X = i)

Another way of saying this is the probability of outcome j if i is
already known. Example: Probability that you have arthritis, if you
are over 65.



Contingency Tables - Conditional Distributions

Conditional distributions of Y given X = i ,
Ó

fi1|i , fi2|i , fi3|i , ..., fij|i
Ô

are key in modeling. There are similarities here to a regression-like
problem, where we are trying to describe an outcome variable as a
function of a predictor variable. This is similar to the conditional
formulation of E [Y |X ] in regression where we are modeling an
outcome of Y conditional on observed X . Stay tuned for more on
this later in the course.



Sampling Methods - Poisson
How do we obtain our data for a contingency table? Di�erent
sampling methods will call for di�erent analyses, so we need to
understand the key features of the methods.

1. Poisson Sampling:

I The total n is not fixed; theoretically unbounded
I Counts are generally observed in a fixed time interval
I Cell counts nij

ind≥ Poisson(µij)

Example 1: Observations of how many people are using
Mac/PC/Linux operating systems over the course of an hour at
three di�erent locations on campus:

Mac PC Linux
DuBois
SciLi
Arnold

n

Example 2: Cumulative disease cases over a year in various
countries:

Cases
USA 806
Mexico 4
Canada 1,937
... ...
total: n



Sampling Methods - Multinomial (fixed n)
2. Multinomial Sampling (fixed n)

I Row/column totals are not fixed, but the overall n is.
I Multinomial distribution with I ú J categories.

For example, we could make a table of counts of operating systems
among the people in a single classroom at UMass by age:

Mac PC Linux total
30 or older
Under 30
total n=16

I Counts distributed nij ≥ Multinomial(n, fi), where fi is a vector
of all probabilities for the cells in the table.

Another example: Cohort study. Enroll 5,000 people and track them
over a year. Measure video game playing (none / low / high) and
hospitalizations for repetitive strain injuries.



Sampling Methods - Multinomial (fixed row n / column n)

3. Multinomial Sampling (fixed row or column n)

I Both n and ni (or nj) are known for all i (or j).
I Example: We want to know the video-game playing habits of

Republicans, Democrats, and Independents. We survey 500 in
each group.

None Low High total
Dem 500
Rep n21 n22 n23 500
Ind 500



Sampling Methods - Multinomial (fixed row n / column n)

I With fixed row totals, the vector of counts in each row will
follow a multinomial distribution based on the row totals:

Q

cccca

ni1
ni2
...

nij

R

ddddb
≥ Multinomial(ni+, fį) with fį =

Q

cccca

fi1|i
fi2|i

...
fij|i

R

ddddb

Another example: A case-control study:

Case Control
SE_1 . . . . . .
SE_2 . . . . . .
SE_3 . . . . . .
Total 1000 1000



The ‰2 Statistic

The chi-squared test statistic compares the observed and expected
values for all count observations in the cells of a table:

Test Statistic =
ÿ

i ,j

(Oij ≠ Eij)2

Eij

* Eij is the expected value for each cell based on its probability
under the null hypothesis
* Oij is the value observed for that cell
* We reject the H0 if our ‰2 statistic is large - a larger TS means
larger deviations from expected counts
* Test is 2-sided by virtue of (...)2

* Compare to a (1 ≠ –)%ile of the ‰2
df distribution with appropriate

degrees of freedom



Goodness of Fit ‰2 Test

H0 : fi1 = fi01 , fi2 = fi02 , ..., fik = fi0k

This answers the question: Does a set of counts follow a specified
(H0) distribution?
n = total # of observations
Ei = fi0i · n
df = k ≠ 1
Simply evaluate using test statistic above: q (O≠E)2

E

Note: fi1 = fi2 = ... = fik is a special case.



Fisher’s Exact Test for Independence
For small sample sizes, methods like this “use exact small-sample
distributions rather than large sample approximations.” (Agresti
p. 90-92) For 2x2 tables, the test looks at all possible combinations
of outcomes under

H0 : variables independent

to determine whether the observed outome is unusual enough to
reject the null.
Conditioning on both sets of marginal totals, we have

p(t) = p(n11 = t) =

A
n1+
t

B A
n2+

n+1 ≠ t

B

A
n

n+1

B

Note: Becuase this is a 2x2 table with row and column totals
known, n11 determines the other three counts.



Fisher’s Exact Test: Example

Muriel Bristol, a colleague of the esteemed statistician Sir Ronald
Fisher, claimed that she could, upon tasting a cup of tea mixed with
milk, divine whether the cup had had milk poured in before the tea,
or tea before the milk. They performed an experiment to test her
claim. . .



Fisher’s Exact Test: Example
Guess Poured First

Poured First Milk Tea Total
Milk 3 1 4
Tea 1 3 4
Total 4 4

In this case, the P-value for Fisher’s exact test is the null probability
of this table and of tables having even more evidence in favor of her
claim.
The observed table, t0 = 3 correct choices, has null probabilityA

4
3

B A
4
1

B

/

A
8
4

B

= 0.229.

The only table more extreme in the direction of Ha is n11 = 4, which
has a probability of 0.014. The P-value is P(n11 Ø 3) = 0.243.
Despite the underwhelming evidence in this test, Bristol did
eventually convince Fisher that she could tell the di�erence.
For more, see Agresti p. 90 - 92.



Birth Order and Gender

We have data on 1,000 2-child families. It is typically thought that
birth order/gender of two o�spring from the same parents are i.i.d.
≥ Bernoulli(0.5). So, we can fill in the expected values: 250 for
each group.

H0 : fi1 = fi2 = fi3 = fi4 = 0.25

Ha : at least 1 fii ”= 0.25

First Child M F
Second Child M F M F Totals

Count 218 227 278 277 1000
Expected Value 250 250 250 250 1000





Birth Order and Gender
Chi-squared test for this data:

TS =
q4

k=1 (nobs ≠ nexp)2

nexp

n = 1000, k = 4, df = k-1 = 3
– = 0.05

n_obs <- c(218, 227, 278, 277)

n_exp <- c(250, 250, 250, 250)

(ts <- sum((n_obs-n_exp)^2/n_exp))

## [1] 12.264

(pval <- 1 - pchisq(ts, df = 3))

## [1] 0.006531413



Birth Order and Gender
With a p-value of 0.0065, we reject the null hypothesis at a
significance level of 0.05. We have evidence to suggest that at least
one fik ”= 0.25.
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