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Distributions of categorical variables: Multinomial
Suppose that each of n independent and identical trials can have
outcome in any of c categories. Let

yij =
{

1 if trial i has outcome in category j
0 otherwise

Then yi = (yi1, ..., yic) represents a multinomial trial with∑
j yij = 1. Let nj =

∑
i yij denote the number of trials having

outcome in category j . The counts (n1, n2, ..., nc) have the
multinomial distribution. The multinomial pmf is

p(n1, ..., nc−1) =
( n!

n1!n2!...nc !

)
πn1

1 π
n2
2 ...π

nc
c ,

where πj = P(Yij = 1)

E (nj) = nπj , Var(nj) = nπj(1 − πj)

Cov(ni , nj) = −nπiπj



Statistical inference for multinomial parameters

Given n observations in c categories, nj occur in category j ,
j = 1, ..., c. The multinomial log-likelihood function is

L(π) =
∑

j
nj log πj

Maximizing this gives MLE

π̂j = nj/n



The Chi-Squared distribution

This is not a distribution for the data but rather a sampling
distribution for many statistics.

I The chi-squared distribution with degrees of freedom by df has
mean df , variance 2(df ), and skewness

√
8/df . It converges

(slowly) to normality as df increases, the approximation being
reasonably good when df is at least about 50.

I Let Z ∼ N(0, 1), then Z 2 ∼ χ2(1)
I The reproductive property: if X 2

1 ∼ χ2(ν1) and
X 2

2 ∼ χ2(ν2), then X 2 = X 2
1 + X 2

2 ∼ χ2(ν1 + ν2). In particular,
X = Z 2

1 + Z 2
2 + ...+ Z 2

ν ∼ χ2(ν) with the standard normal Z ’s.



Chi-square goodness-of-fit test for a specified multinomial

Consider hypothesis H0 : πj = πj0, j = 1, ..., c, - Chi-square
goodness-of-fit statistic (score)

X 2 =
∑

j

(nj − µj)2

µj

where µj = nπj0 is called expected frequencies under H0.

I Let X 2
o denote the observed value of X 2. The P-value is

P(X 2 > X 2
o ).

I For large samples, X 2 has approximately a chi-squared
distribution with df = c − 1. The P-value is approximated by
P(χ2

c−1 ≥ X 2
o ).



LRT test for a specified multinomial
I LRT statistic

G2 = −2 log Λ = 2
∑

j
nj log(nj/nπj0)

For large n, G2 has a chi-squared null distribution with
df = c − 1.

I When H0 holds, the goodness-of-fit Chi-squiare X 2 and the
likelihood ratio G2 both have large-sample chi-squared
distributions with df = c − 1.

I For fixed c, as n increases the distribution of X 2 usually
converges to chi-squared more quickly than that of G2. The
chi-squared approximation is often poor for G2 when n/c < 5.
When c is large, it can be decent for X 2 for n/c as small as 1
if table does not contain both very small and moderately large
expected frequencies.



Distributions of categorical variables: Poisson

One simple distribution for count data that do not result from a
fixed number of trials. The Poisson pmf is

p(y) = e−µµy

y ! , y = 0, 1, 2, ... E (Y ) = Var(Y ) = µ

For adult residents of Britain who visit France this year, let

I Y1= number who fly there
I Y2=number who travel there by train without a car
I Y3=number who travel there by ferry without a car
I Y4=number who take a car

A poisson model for (Y1,Y2,Y3,Y4) treats these as independent
Poisson random variables, with parameters (µ1, µ2, µ3, µ4). The
total n =

∑
i Yi also has a Possion distribution, with parameter∑

i µi .



Distributions of categorical variables: Poisson

The conditional distribution of (Y1,Y2,Y3,Y4) given
∑

i Yi = n is
multinomial(n, πi = µi/

∑
j µj)



Example: A survey of student characteristics

In the R data set survey, the Smoke column records the survey
response about the student’s smoking habit. As there are exactly
four proper response in the survey: “Heavy”, “Regul” (regularly),
“Occas” (occasionally) and “Never”, the Smoke data is multinomial.
library(MASS) # load the MASS package
levels(survey$Smoke)

## [1] "Heavy" "Never" "Occas" "Regul"

(smoke.freq = table(survey$Smoke))

##
## Heavy Never Occas Regul
## 11 189 19 17



Example: A survey of student characteristics

Suppose the campus smoking data are as shown above. You wish to
test null hypothesis of whether the frequency of smoking is the
same in all of the groups on campus, or H0 : πj = πj0, j = 1, ..., 4.
(x2.test <- chisq.test(smoke.freq,

p = rep(1/length(smoke.freq), length(smoke.freq))))

##
## Chi-squared test for given probabilities
##
## data: smoke.freq
## X-squared = 382.51, df = 3, p-value < 2.2e-16

Thus, there is strong evidence against the null hypothesis that all
groups are equally represented on campus (p<.0001).



Example (continued): expected and observed counts

x2.test$expected

## Heavy Never Occas Regul
## 59 59 59 59

x2.test$observed

##
## Heavy Never Occas Regul
## 11 189 19 17



Testing with estimated expected frequencies
In some applications, the hypothesized πj0 = πj0(θ) are functions of
a smaller set of unknown parameters θ.

For example, consider a scenario (Table 1.1 in CDA) in which we are
studying the rates of infection in dairy calves. Some calves become
infected with pneumonia. A subset of those calves also develop a
secondary infection within two weeks of the first infection clearing
up. The goal of the study was to test whether the probability of
primary infection was the same as the conditional probability of
secondary infection, given that the calf got the primary infection.
Let π be the probability of primary infection. Fill in the following
2x2 table with the associated probabilites under the null hypothesis:

Secondary Infection

Primary Infection Yes No Total
Yes
No



Example continued
Let nab denote the number of observations in row a and column b.

Secondary Infection

Primary Infection Yes No Total
Yes n11 n12
No n21 n22

The ML estimate of π is the value maximizing the kernel of the
multinomial likelihood

(π2)n11(π − π2)n12(1 − π)n22

The MLE is

π̂ = (2n11 + n12)/(2n11 + 2n12 + n22)



Example continued

One process for drawing inference in this setting would be the
following:

I Obtain the ML estimates of expected frequencies: µ̂j = nπj0(θ̂)
by plugging in the ML estimates θ̂ of θ

I Replace µj by µ̂j in the definition of X 2 and G2

I Use the approximate distributions of X 2 and G2 are χ2
df with

df = (c − 1) − dim(θ).



Example continued
A sample of 156 dairy calves born in Okeechobee County, Florida,
were classified according to whether they caught pneumonia within
60 days of birth. Calves that got a pneumonia infection were also
classified according to whether they got a secondary infection within
2 weeks after the first infection cleared up.

Secondary Infection

Primary Infection Yes No
Yes 30(38.1) 63(39.0)
No 0 63(78.9)

The MLE is

π̂ = (2n11 + n12)/(2n11 + 2n12 + n22) = 0.494

The score statistic is X 2 = 19.7. It follows a Chi-square distribution
with df = c − p − 1 = (3 − 1) − 1 = 1.



Example continued

The p-value is
P(χ2

1 > 19.7) =

1-pchisq(19.7, df=1)

## [1] 9.060137e-06

Therefore, the evidence suggests that the probability of primary and
secondary infections being the same is not supported by the data.
Under H0, we would anticipate that many more calves would have
secondary infections than did end up being infected. “The
researchers concluded that primary infection had an immunizing
efect tht reduced the likelihood of a secondary infection.”


