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Extensions to Models for Count Data

There are several ways to extend models for count data in order to
capture properties like overdispersion.

I Poisson model with adjustment for overdispersion (see previous
notes)

I Poisson-Gamma Model
I Generalized Linear Mixed Models (GLMMs)



Poisson-Gamma Model

A Poisson-Gamma model is one way to account for overdispersion in
models of count data. The model has two parts:

I First, we assume that the outcome variable follows a Poisson
distribution: Y |λ ∼ Poisson(λ).

I Second, we assume that the rate parameter for that Poisson
distribution itself follows a Gamma distribution:
λ ∼ Gamma(k, µ).
I Under this parameterization, E[λ] = µ, Var[λ] = µ2/k.
I We can alternatively parameterize in terms of a dispersion

parameter γ = 1/k.



Poisson-Gamma Model

I Under these two assumptions, the marginal distribution of Y
follows a negative binomial distribution:
Y ∼ NegativeBinomial(k, µ)

I See this blog post for a proof that the Poisson-Gamma model
is a negative binomial distribution.

I The mean and variance of the Poisson-Gamma model is not
equal (as opposed to a Poisson model), which allows it to
account for overdispersion.

https://probabilityandstats.wordpress.com/tag/poisson-gamma-mixture/


Poisson-Gamma Model

I The expected value of Y is given by:

E[Y ] = E[E[Y |λ]]
= E[λ]
= µ

I And the variance:

Var[Y ] = E[Var[Y |λ]] + Var[E(Y |λ)]
= E[λ] + Var[λ]
= µ+ µ2/k, or equivalently
= µ+ γµ2

I Note that as γ → 0 (k →∞), the distribution of Y
approaches a Poisson distribution.



Generalized Linear Mixed Models

Another approach is to use a Generalized Linear Mixed Model
(GLMM).

I First, assume that the outcome Yi follows a Poisson
distribution.

I Assume the link-transformed expected value of the outcome is
a linear function of the covariates and random effects:

log(E[Yi |µi ]) = XT
ij β + µi

I Finally, assume that the random effects ui follow a distribution:

ui ∼ N(0, σ2)

I This example uses a log link and assumes the ui are normally
distributed.



Generalized Linear Mixed Models

I Note that you need to use a link that transforms the linear
predictor to a non-negative value. For example, the identity link
leads to structural problems because a negative linear predictor
implies a negative expected count, which is impossible.

Other choices are possible for the distribution of ui :

I Assuming ui ∼ Gamma(1, γ) implies a negative binomially
distributed outcome Y .

I Another possible choice is assume ui follow a log-normal
distribution.

I Each choice implies a different structure for the random
intercepts.


