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Mixture Distributions

I A mixture distribution is a probability distribution derived from
a convex (weighted) combination of individual probability
distributions, called mixture components.

I The weights associated with each mixture component are
called mixture weights; these are non-negative and sum to 1.

I Notation: Given a set of mixture components gk(x) and
weights wk indexed by k = 1, ...,K , the mixture distribution
can be written as

f (x) =
K∑

k=1
wkgk(x) (1)

where
∑K

k=1 wk = 1 and wk ≥ 0 ∀k.



Mixture Distributions (cont’d)

I Mixture distributions are not to be confused with the
convolution of probability distributions.

I The former models the distribution of a random variable as
the weighted sum of two or more mixture distributions; while
the latter models the value of a random variable as the sum of
the values of two or more random variables.

I Mixture distributions are typically used to model a statistical
population with subpopulations that are believed to share
similar characteristics.

I Mixture distributions are formulated as hierarchical models
with hidden (latent) factors, often making exact statistical
inference an intractable task.



GLMM as a model for mixture distributions

I Consider an analysis of children’s gender in relation to their
mother. Define a binary random variable Yij which equals 1 if
the j-th child born to the i-th mother is a boy.

I We write a GLMM model for the outcome as follows

Yij |αi ∼ Bernoulli(πi)
πi = logit−1(αi)
αi ∼ Normal(0, σ2

α)

I In this example, the population of interest are the children, and
the mixture distribution accounts for subpopulations of children
that share the same mother. The rationale is that these
children, being from the same mother, would share similar
(genetic or other) characteristics.



GLMM as a model for mixture distributions (cont’d)

I Using the law of total expectation, we can compute the
expectation of Yi as:
E [Yi ] = E [E [Yi |αi ]] = E [πi ] = E [logit−1(αi)]

I Unfortunately, an exact expression for E [Yi ] involves a
complicated integral form, and so exact inference is intractable
for this model formulation.

I Nonetheless, in this simple setting, one can appeal to a Monte
Carlo simulation to approximate the expectation of interest.

I Alternatively, one can opt for a different model formulation
that is amenable to exact expressions for the expectation and
variance of interest.



Beta-Binomial Model

I Following the same example of children’s gender and their
mother, we can formulate a Beta-Binomial model for the
outcome Yij as follows:

Yi |πi ∼ Binomial(ni , πi)
πi ∼ Beta(α, β)

I In here, we model πi as a draw from a Beta distribution.
I It is easy to see that the Yi reduces to a Bernoulli distribution

when α = β = 1.



Beta-Binomial Model (cont’d)

I Another appealing property of the model is that the Beta
distribution is conjugate to the Binomial distribution.

I This leads to a closed form expression for the mean and
variance of Yi :

E [Yi ] = niα

α+ β
(2)

Var(Yi) = niαβ(α+ β + ni)
(α+ β)2 (α+ β + 1) (3)



Shrinkage Effect for Beta-Binomial
I We can use the conjugacy of the Beta prior and Binomial

likelihood to derive a distributional form for the posterior πi |yi .

yi |πi ∼ Binomial(ni , πi)
πi |α, β ∼ Beta(α, β)

p(πi |yi , α, β) ∝ p(yi |πi)p(πi |α, β)
∝ πyi

i (1− πi)ni −yi ∗ πα−1
i (1− πi)β−1

∝ πyi +α−1
i (1− πi)ni −yi +β−1

∼ Beta(yi + α, ni − yi + β)

I Having found a closed form expression for the posterior πi |yi ,
we can compute the posterior mean as

E (πi |yi , α, β) = (yi + α)
(ni + α+ β) (4)



Shrinkage Effect for Beta-Binomial (cont’d)

I From Eq(4), we can clearly see the influence of the parameters
of the prior (α, β) on the posterior mean πi |yi .

I As (α, β) increase, E [π|yi ] decreases; this is sometimes referred
to as a shrinkage effect.

I The effect of the prior on the posterior mean gets weaker as
the sample size increases. Intuitively, this reflects the Bayesian
perspective of relying more on prior information when few data
points are available; and relying on the data when the sample
size is large.

I We provide an illustration of the shape of the posterior π|yi for
different settings of the prior π|α, β. We use a fixed sample
size of N = 20.



Shrinkage Effect: plot of posterior for different prior
settings of the Beta-Binomial model
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