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Clustered Data

I Clustered Data:
I Hierarchy, nested populations
I Longitudinal, Correlated observations or sets .eg repeated

measure
I Example: (Hierarchy of nested populations)
I Patient ∈ Hospital ∈ Region



Clustered Data
I Example: (Longitudinal)
I Repeated measurements on the same unit of observation

I Patients have multiple temperature measurements over time
I Temperature ∈ Patient ∈ Clinic

Figure 1: Alkema 2017



Implications of Clustered Data
I Observations in clusters violates our assumptions of

independence
I Clustered data are less informative and less generalizable than

independent data
I Example: Subjects within a household are more similar and

will vary less. Similar genetics and behavior



Example Notation

Mixed models, also known as multilevel or hierarchical models, are
used to model cluster data. We will use the following notation to
model such data.

Yij = Response variable

Trtij = Treatment variable



Example Notation 2

j = 1, 2, ..., n
i = 1, 2, ..., ni

N =
∑

i
ni = total number of groups

Treatment Trtij =
{
1, if Trtij was treated
0, otherwise

Figure 2:



Example to begin with

I Let Yij denotes the counts of mortality

Yij ∼ Poisson(λij ,Pi)

log(λij) = β0 + β1Trtij + β2Xi

I We want to make inference about β1. What is the treatment
effect?

I Observations are not iid, need “adjustment”
I How can we account for variance within groups?

I 1. Marginal models with generalized estimating equations
(GEE) for variance adjustment

I 2. generalized linear mixed models (GLMM’s)



GLMM’s Models

I Account for modeling for individual and group level variation in
estimating group-level coefficients

I Allow the proper measure of variation in individual level
regression coefficients

I For point estimates, Shrinkage (relative to sample size) of
parameters toward group means

I Rule of thumb
I number of groups greater than 5
I substainial variation among groups



GLMMS Model Notation

I where β is a fixed effect and µi are varying (random) effects

g(E [yij |µi ]) = XT
ij β + ZT

ij µi

µi ∼ N(0,Gθ)

I Agresti uses i to represent the group, Yij is the jth observation
in ith group

I So here we have i different µ which are draws from a normal
I The µi have a common distribution
I Notice β has no subscript, β is fixed
I β is a global estimate and µi is a group specific estimate
I g is a glm link
I θ is a parameter that governs the distribution of the random

effect



Estimation

L(β, θ) = f (~y |β, θ)

=
∫

f (~y |~µ)f (~µ)du

I where we integrate across our marginal f (µ̂)
I these problems usually do not have closed form solutions
I How to approximate? Use Bayesian MCMC or HMC

algorithims to sample from posterior distribution of β and θ
I approximate with Laplace methods (some coefficients are

subject to penalty terms)
I Degrees of Freedom: Approximated by estension of the Hat

matrix
I some closed for solutions (ex: beta-binomial conjugate in next

lecture)

tr(H) = p
p ≤ tr(H) ≤ p + q



Example
I Lets say we are looking at treatment(spinal implants) to relieve

back pain. Rows represent visit 1 and columns represent visit 2

Figure 3:

I pain indicator Yij and group indicator Xij

yij =
{
1 patient j at visit i has no pain
0 patient j at visit i has pain

xij =
{
1 i=2; patient’s second visit
0 i=1; pateint’s first visit



Example (possible models)
I logistic-normal model

logit(P(Yij = 1|µi)) = α+ βXij + µi

µi ∼ N(0, σ2
µ)

I logistic-normal, similar notation for bayesians with weakly
informative priors

Yi ∼ N(π, σ2
y )

logit(π) = αi + βXij

αi ∼ N(β0, σ
2
α)

β0 ∼ N(0, 100)
σα ∼ U(0, 5)



Example (interpretation)

logit(P(Yij = 1|µi)) = α+ βXij + µi

µi ∼ N(0, σ2
µ)

I α ∼ log odds of pain free at visit 1
I β ∼ change in log odds of being pain free comparing visit 2 to

visit 1



Example (interpretation)

I With mixed effect µi our intercept can now vary


