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Penalized Likelihood

• Consider an arbitrary model with generic parameter β, a log-likelihood function L(β).

• Let λ(.) denotes the roughness penalty which decreases as the values of β are smoother (i.e. uniformly
close to zero). The penalized likelihood estimator L*(β) is :

L∗(β) = L(β)− λ(β),

• Penalized likelihood methods are examples of regularization methods. It is a general approach for
modifying ML methods to give sensible answers in unstable situations such as modeling using data sets
consisting too many variables.

Types of Penalties λ(β)

• L2-norms (Ridge Regression) : λ(β) = λ
∑

j β
2
j

• L1-norms (LASSO) : λ(β) = λ
∑

j |β|, subject to the constraint
∑

j |β| ≤ K, where K is some constant.

• L0-norms : λ(β) ∝ non− zeroβj -AIC/BIC methods are a special case of L_{0}-penalization but it’s
hard to optimize for large j.

How to select λ(β) for penalized likelihood

-The degree of smoothing depends on the smoothing parameter λ, the choice of which reflects the bias/variance
trade-off. When λ increases, the estimates {βj} decrease towards zero, thus decreasing the variance but
increases the bias.

• K-fold Cross-validation Goal : We are interested in choosing a λ based on fitting the model to part of
the data and then checking the goodness of fit in terms of prediction for the remaining data.

• Step 1: Fix λ′.

• Step 2: Do this k-times, leave out the fraction 1/k of the data and predict it using the model fit for the
remaining data. Choose the value of λ which has the lowest prediction error.

• Step 3: Compute the error for λ′

• Step 4: Repeat for k-values of λ. Then, choose the value of λ which has the lowest prediction error.

Note: Bayesian methods can also approximate penalized likelihood if prior(β) ∝ exp(−λ(β)) = posterior(β) ∝
L∗(β)
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Pros/Cons of Penalized Likelihood

• L2-norms (-) : Useless for finding a rigid model, because all the variables remain in the model.

• L1-norms (+) : Allows us to plot estimates as a function of λ to summarize how explanatory variables,
βj drop out as λ increases by selecting individual indicators rather than entire factors.

• L1-norms (-) : May overly penalize βj that are truly large may hold high bias, making inference difficult.
Solution: adjust the penalty function such that it includes both the L_{1} and L_{2} norms.

General Additive Models (GAMs)

• GAMs are another type of GLM that specifies a link function g(.) and a distribution for the random
component.

• In GLMs, we had g(µi) =
∑

j βjxij

• In GAMs, g(µi) =
∑

j sj(xij), where s_{j}(.) is unspecified smooth function of predictor j. Examples:
cubic splines: cubic polynomials over sets of disjoint intervals, joined together at boundaries called
knots.

-We can fit GAMs using the backfitting algorithm, similar to Newton’s method, to utilize local smoothing.

• Step 1: Initialize sj = 0

• Step 2: For each rth iteration, update sj such that

s
(r)
j = y

(r)
i −

∑
k 6=j

s
(r)
k (xik), j = 1, ..., p

• This will fit a model that assigns a deviance and an approximate degree of freedom to each sj in the
additive predictor, allowing inference about each term. The df helps determine how smooth the GAM
fit looks. (e.g. Smooth functions with df = 4 look similar to cubic polynomials, which has 4 parameters)

• Like with GLMs, we can compare deviances for nested models to test whether a model gives a significantly
better fit than a simpler model.

Final Notes

• GAMs and penalized likelihood methods are stronger than GLMs because they impersonate GLMs
in assuming a binomial distribution for a binary response and having a df value associated with each
explanatory effect.
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