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Penalized Likelihood

o Consider an arbitrary model with generic parameter 3, a log-likelihood function L(g).

o Let A(.) denotes the roughness penalty which decreases as the values of § are smoother (i.e. uniformly
close to zero). The penalized likelihood estimator L*(3) is :

L*(B) = L(B) = A(B),

e Penalized likelihood methods are examples of regularization methods. It is a general approach for
modifying ML methods to give sensible answers in unstable situations such as modeling using data sets
consisting too many variables.

Types of Penalties \(()

o Lo-norms (Ridge Regression) : A(3) = A, B3
o Li-norms (LASSO) : A(8) = A3_; B[, subject to the constraint 3 [3| < K, where K is some constant.

o Lg-norms : A(8) xx non — zerof; -AIC/BIC methods are a special case of L {0}-penalization but it’s
hard to optimize for large j.

How to select \(3) for penalized likelihood

-The degree of smoothing depends on the smoothing parameter A, the choice of which reflects the bias/variance
trade-off. When X increases, the estimates {f;} decrease towards zero, thus decreasing the variance but
increases the bias.

e K-fold Cross-validation Goal : We are interested in choosing a A based on fitting the model to part of
the data and then checking the goodness of fit in terms of prediction for the remaining data.

e Step 1: Fix ).

o Step 2: Do this k-times, leave out the fraction 1/k of the data and predict it using the model fit for the
remaining data. Choose the value of A\ which has the lowest prediction error.

e Step 3: Compute the error for \’
e Step 4: Repeat for k-values of A. Then, choose the value of A which has the lowest prediction error.

Note: Bayesian methods can also approximate penalized likelihood if prior(8) o« exp(—A(3)) = posterior(S) «
L*(p)



Pros/Cons of Penalized Likelihood

e Lo-norms (-) : Useless for finding a rigid model, because all the variables remain in the model.

o Li-norms (+) : Allows us to plot estimates as a function of A to summarize how explanatory variables,
B; drop out as A increases by selecting individual indicators rather than entire factors.

o Li-norms (-) : May overly penalize 3; that are truly large may hold high bias, making inference difficult.
Solution: adjust the penalty function such that it includes both the L_ {1} and L_ {2} norms.

General Additive Models (GAMs)

o GAMs are another type of GLM that specifies a link function g(.) and a distribution for the random
component.

o In GLMs, we had g(ui) = 3, B;i;

o In GAMs, g(u;) = >, sj(wij), where s_{j}(.) is unspecified smooth function of predictor j. Examples:
cubic splines: cubic polynomials over sets of disjoint intervals, joined together at boundaries called
knots.

-We can fit GAMs using the backfitting algorithm, similar to Newton’s method, to utilize local smoothing.
o Step 1: Initialize s; = 0
o Step 2: For each rth iteration, update s; such that

557") = yl(f) - ZSg)(%k),] = 17 P
Py

o This will fit a model that assigns a deviance and an approximate degree of freedom to each s; in the
additive predictor, allowing inference about each term. The df helps determine how smooth the GAM
fit looks. (e.g. Smooth functions with df = 4 look similar to cubic polynomials, which has 4 parameters)

e Like with GLMs, we can compare deviances for nested models to test whether a model gives a significantly
better fit than a simpler model.

Final Notes

e« GAMs and penalized likelihood methods are stronger than GLMs because they impersonate GLMs
in assuming a binomial distribution for a binary response and having a df value associated with each
explanatory effect.
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