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Poisson GLMs

» Imagine you have count data following the Poisson distribution:
Y; ~ Poisson(\;)

» Y is the total count in the time interval, ); is E(Y;), that is,
the risk/rate of occurrence in some time interval,
» We use a log link for our GLM:

ni = Xif = log \j = g(\i) = g(Elyi])



Poisson GLMs

> Key Points:
» Log link implies multiplicative effect of covariates

log(\) = Bo + B1X1 + B2X2
A\ = PP XighaXo

- Relative risk is the interpretation for e

log(Ni|X1 =k +1,X2 = ¢) = PBo + Bi(k + 1) + Bo(c)
—log(Ai|X1 = k, Xo = ¢) = o + B1(k) + B2(c)
log((AilX1 = k+1,Xo=c)/N|X1 =k+1,X=c)= (1



Exposure / Offset Term

Often Poisson models have an ‘exposure’ or ‘offset’ term,
representing a demoninator of some kind. Examples: Let u; be
offset for Y;...

» Disease incidence: Y; = the number of cases of flu in a
population in 1 year (in location i), u; = population size

» Accident rates: Y; = the number of traffic accidents at site i in
1 day, u; = average number of vehicles travelling through site i
in 1 day, or u; = the number of vehicles through site i yesterday

» The offset is used to scale the Y;



Exposure / Offset Term

Y; ~ Poisson(u; * \;)
E(Y,) = Uj * )\,'
log(E(Y7)) = log(ui) + log(i)
» log(uj) is our offset (from observed data, can be thought of as

an intercept)
» log()\;) is our n; (the linear predictor)



Exposure / Offset Term

> In R, the Poisson glm can be specified with an offset

» gIm(Y ~ X1 + Xy, family = ‘poison’, offset = log(u), data ...)

P the log is important in order to get the correct offset

» The offset term is adding more information to the model but
not estimating a coefficient



Exposure / Offset Term

Yi ~ Poisson(u; * \;)

» The Y; could be cases per day

» u; could be population (persons)

» then \; would be cases per day per population (persons)
» which makes this a rate for an individual

log(E(Y})) — log(ui) = log(A;)
log(E(Y;)/ui) = log(Ai)



Overdispersion
» In Poisson models for Y; ~ Poisson(\;)
Var(Y;) =\
» In GLM estimation notation

wi = E(\i)
Var(u;) = )\,’

» In an overdispersed model, the variance is higher because of
some variability not captured by Poisson

Var(ui) = oA
¢ >0

- Overdispersion implies ¢ > 1



Overdispersion

» Likelihood equations for Poisson GLM

zN: (yi — wi)xy Opi _0
—~  Var(u;) On

_/ :07"7p

» Depends on the distribution of Y through u; and Var(u)

» ¢ drops out of the likelihood equations - this makes sense;
variability won't affect the MLE - that is, 8s are identical for
models with ¢ > 1 and ¢ =1

» However, ¢ does impact estimated standard errors



Overdispersion

8u,-
o
cov(ﬁA) = (XTWXY1 = ¢C0V(5A)

)/ Var(Y;)

W,':(

> ¢ does not affect the 8s but it does affect their covariance as a
scaling factor



Is Overdispersion Term Needed in a Model?

> (See example 4.7.4 in Agresti)
» Start with standardized residuals

» Assume:

v Var(y;)

=Ll (o, 1)
Vi
n

szz ~ X%—k
i=1

» where k is the number of parameters

Zj =

> if the sum of z? is large (compare to chi-squared), we may
need an overdispersion term ¢



Is Overdispersion Term Needed in a Model?

2
doit1 %

= n—k

» summarizes overdispersion in data compared to the fitted model

> if > > 1, we should use the “quasipoisson” family in R's glm()
function

» The SEs of a quasipoisson model are equivalent to the SEs of
the Poisson model miultiplied by \/g

SEqp(ﬁA) = SEP(BA) * \/é



