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Poisson GLMs

I Imagine you have count data following the Poisson distribution:

Yi ∼ Poisson(λi)

I Yi is the total count in the time interval, λi is E (Yi), that is,
the risk/rate of occurrence in some time interval,

I We use a log link for our GLM:

ηi = Xiβ = log λi = g(λi) = g(E [yi ])



Poisson GLMs

I Key Points:
I Log link implies multiplicative effect of covariates

log(λ) = β0 + β1X1 + β2X2

λ = eβ0eβ1X1eβ2X2

- Relative risk is the interpretation for eβ

log(λi |X1 = k + 1,X2 = c) = β0 + β1(k + 1) + β2(c)
−log(λi |X1 = k,X2 = c) = β0 + β1(k) + β2(c)

log((λi |X1 = k + 1,X2 = c)/λi |X1 = k + 1,X2 = c) = β1



Exposure / Offset Term

Often Poisson models have an ‘exposure’ or ‘offset’ term,
representing a demoninator of some kind. Examples: Let ui be
offset for Yi . . .

I Disease incidence: Yi = the number of cases of flu in a
population in 1 year (in location i), ui = population size

I Accident rates: Yi = the number of traffic accidents at site i in
1 day, ui = average number of vehicles travelling through site i
in 1 day, or ui = the number of vehicles through site i yesterday

I The offset is used to scale the Yi



Exposure / Offset Term

Yi ∼ Poisson(ui ∗ λi)
E (Yi) = ui ∗ λi

log(E (Yi)) = log(ui) + log(λi)

I log(ui) is our offset (from observed data, can be thought of as
an intercept)

I log(λi) is our ηi (the linear predictor)



Exposure / Offset Term

I In R, the Poisson glm can be specified with an offset
I glm(Y ∼ X1 + X2, family = ‘poison’, offset = log(u), data . . . )
I the log is important in order to get the correct offset
I The offset term is adding more information to the model but

not estimating a coefficient



Exposure / Offset Term

Yi ∼ Poisson(ui ∗ λi)

I The Yi could be cases per day
I ui could be population (persons)
I then λi would be cases per day per population (persons)
I which makes this a rate for an individual

log(E (Yi))− log(ui) = log(λi)
log(E (Yi)/ui) = log(λi)



Overdispersion
I In Poisson models for Yi ∼ Poisson(λi)

Var(Yi) = λi

I In GLM estimation notation

µi = E (λi)
Var(µi) = λi

I In an overdispersed model, the variance is higher because of
some variability not captured by Poisson

Var(µi) = φλi

φ > 0

- Overdispersion implies φ > 1



Overdispersion

I Likelihood equations for Poisson GLM

N∑
i=1

(yi − ui)xij
Var(µi)

∂µi
∂ηi

= 0

j = 0, .., p

I Depends on the distribution of Y through µi and Var(µ)
I φ drops out of the likelihood equations - this makes sense;

variability won’t affect the MLE - that is, βs are identical for
models with φ > 1 and φ = 1

I However, φ does impact estimated standard errors



Overdispersion

wi = (∂ui
∂ηi

)2/Var(Yi)

cov(β̂) = (XT WX )−1 = φcov(β̂)

I φ does not affect the βs but it does affect their covariance as a
scaling factor



Is Overdispersion Term Needed in a Model?

I (See example 4.7.4 in Agresti)
I Start with standardized residuals
I Assume:

zi = yi − ŷi√
Var(ŷi)

= yi − µi√
µi
∼ N(0, 1)

n∑
i=1

z2
i ∼ χ2

n−k

I where k is the number of parameters
I if the sum of z2

i is large (compare to chi-squared), we may
need an overdispersion term φ



Is Overdispersion Term Needed in a Model?

φ̂ =
∑n

i=1 z2
i

n − k

I summarizes overdispersion in data compared to the fitted model
I if φ2 > 1, we should use the “quasipoisson” family in R’s glm()

function
I The SEs of a quasipoisson model are equivalent to the SEs of

the Poisson model miultiplied by
√
φ̂

SEqp(β̂) = SEp(β̂) ∗
√
φ̂


