
Intro to Categorical Data Analysis
Nicholas Reich and Anna Liu, based on Agresti Ch 1

Where this course fits

• Third course in Biostat “Methods Sequence”, after intro stats and linear regression.
• Good lead-in to random effects models, machine learning/classification models.
• Balance of traditional stat theory and application.
• Most applications will have biomedical/public health focus.

History of the course

• Taught since mid-1980s at UMass-Amherst (PUBHLTH 743)
• Led to most cited statistics book in print (> 30,000 citations)

Focus of this course (different from the original)

• Foundational concepts
– Analysis of contingency tables
– Generalized Linear Models (GLMs)
– Discussion of Bayesian and frequentist approaches

• A taste of common, modern extensions to GLMs
– Machine Learning classification methods
– Longitudinal data (repeated measures)
– Zero-inflated models, over-dispersion

Course Introduction

• This course focuses on methods for categorical response, or outcome variables.
– Binary, e.g.
– Nominal, e.g.
– Ordinal, e.g.
– Discrete-valued (“interval”), e.g.
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• Explanatory, or predictor variables can be any type
• Very generally, we are trying to build models

Types of categorical variables

• The way that a variable is measured determines its classification
– What are different ways that a variable on education could be classified?

• The granularity of your data matters!
– In terms of information per measured datapoint, discrete variables > ordinal variables > nominal

variables
– This has implications for study design and sample size.

Distributions of categorical variables: Binomial

Let y1, y2, · · · , yn denote observations from n independent and identical trials such that

P (Yi = 1) = π P (Yi = 0) = 1− π

The total number of successes (1s) Y =
∑n
i=1 Yi has the binomial distribution, denoted by bin(n, π). The

probability mass function for the possible outcomes y for Y is

p(y) =
(
n
y

)
πy(1− π)(n−y), y = 0, 1, ..., n

with µ = E(Y ) = nπ and σ2 = V ar(Y ) = nπ(1− π).

• The binomial distribution converges to normality as n increases, for fixed π, the approximation being
reasonable when n[min(π, 1− π)] is as small as 5.

• Interactive binomial distribution

Statistical inference

Inference is the use of sample data to estimate unknown parameters of the population. One method we will
focus on is maximum likelihood estimation (MLE).
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http://shiny.stat.calpoly.edu/MLE_Binomial/
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Statistical inference: maximum likelihood

• The likelihood function is the likelihood (or probability in the discrete case) of the sample of your
data X1, ..., Xn, given the unknown parameter(s) β. Denoted as l(β|X1, ..., Xn) or simply l(β).

• The MLE of β is defined as
β̂ = sup

β
l(β) = sup

β
L(β)

where L(β) = log(l(β)). The MLE is the parameter value under which the data observed have the
highest probability of occurrence.

Statistical inference: MLE (con’t)

• MLE have desirable properties: under weak regularity conditions, MLE have large-sample normal
distributions; they are asymptotically consistent, converging to the parameter as n increases; and
they are asymptotically efficient, producing large-sample standard errors no greater than those from
other estimation methods.

Covariance matrix of the MLE

Let cov(β̂) denote the asymptotic convariance matrix of β̂, where β is a multidimensional parameter.
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• Under regularity conditions, cov(β̂) is the inverse of the information matrix, which is

[I(β)]i,j = −E
(
∂2L(β)
∂βi∂βj

)

• The standard errors are the square roots of the diagonal elements for the inverse of the information
matrix. The greater the curvature of the log likelihood function, the smaller the standard errors.

Statistical inference for Binomial parameter

• The binomial log likelihood function is

L(π) = log[πy(1− π)(n−y)]

= y log(π) + (n− y) log(1− π)

• Differentiating wrt π and setting it to 0 gives the MLE π̂ = y/n.
• The Fisher information is

I(π) = n/[π(1− π)]

• The asympotic distribution of the MLE π̂ is N(π, π(1− π)/n).

Statistical inference for Binomial parameter

The score, Wald, and likelihood ratio tests use different information from this curve to draw inference about
π.

Wald test

Consider the hypothesis
H0 : β = β0 H1 : β 6= β0

The Wald test defines a test statistic

z = (β̂ − β0)/SE, where SE = 1/
√
I(β̂) =

√
π̂(1− π̂)/n

Under H0 : β = β0, the wald test statistic z is approximately standard normal. Therefore H0 is rejected if
|z| > zα/2.

Likelihood ratio test

The likelihood ratio test (LRT) is defined as

−2 log Λ = −2 log(l0/l1) = −2(L0 − L1)

where l0 and l1 are the maximized likelihood under H0 and H0 ∪ H1. The null hypothesis is rejected if
−2 log Λ > χ2

α(df) where df is the difference in the dimensions of the parameter spaces under H0 ∪H1 and
H0.
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Figure 1: binomial likelihood
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Score (a.k.a. Wilson) test

Score test, also called the Wilson or Lagrange multiplier test, is based on the slope and expected curvature
of the log-likelihood function L(β) at the null value β0. It utilizes the size of the score function

u(β) = ∂L(β)/∂β

evaluated at β0.

The score test statistic is
z = u(β0)

[I(β0)]1/2 = π̂ − π0√
π0(1− π0)/n

.

Example: Estimating the proportion of Vegetarians

Students in a class were surveyed whether they are vegetarians. Of n = 25 students, y = 0 answered “yes”.

• Using the Wald method, compute the 95% confidence interval for π (true proportion of vegetarians in
the population):

• Using the Score method, compute the 95% confidence interval for π (true proportion of vegetarians in
the population):

Warning about the Wald test

• When a parameter falls near the boundary of the sample space, often sample estimates of standard
errors are poor and the Wald method does not provide a sensible answer.

• For small to moderate sample sizes, the likelihood-ratio and score tests are usually more reliable than
the Wald test, having actual error rates closer to the nominal level.

Comparison of the tests

There are lots of different methods to compute CIs for a binomial proportion!
library(binom)
binom.confint(x=0, n=25)

## method x n mean lower upper
## 1 agresti-coull 0 25 0.00000000 -0.02439494 0.15758719
## 2 asymptotic 0 25 0.00000000 0.00000000 0.00000000
## 3 bayes 0 25 0.01923077 0.00000000 0.07323939
## 4 cloglog 0 25 0.00000000 0.00000000 0.13718517
## 5 exact 0 25 0.00000000 0.00000000 0.13718517
## 6 logit 0 25 0.00000000 0.00000000 0.13718517
## 7 probit 0 25 0.00000000 0.00000000 0.13718517
## 8 profile 0 25 0.00000000 0.00000000 0.12291101
## 9 lrt 0 25 0.00000000 0.00000000 0.07398085
## 10 prop.test 0 25 0.00000000 0.00000000 0.16577301
## 11 wilson 0 25 0.00000000 0.00000000 0.13319225
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Bayesian inference for binomial parameters
Bayesian analyses incorporate “prior information” about parameters using

• prior subjective belief about a parameter, or
• prior knowledge from other studies, or
• very little knowledge (a “weakly informative” prior)

Prior distribution (g) is combined with the likelihood (f) to create a posterior (h):

h(θ|y) =
f(y|θ)g(θ)
f(y)

∝ f(y|θ)g(θ)

Using Beta distributions for priors
If π ∼ beta(α1, α2) (for α1 > 0 and α2 > 0) then g(π) ∝ πα1−1(1− π)α2−1.

Beta is a conjugate prior distribution for a binomial parameter, implying that the posterior is also a beta distribution, specifically, h
follows a beta(y + α1, n− y + α2).

Shiny app for Bayesian inference of a Binomial.

An exercise
1. Write down your prior belief about the probability that this coin will land heads.
2. Share it with the class
3. Use the prior probabilities to estimate a beta distribution.

library(MASS)
x <- c(

## enter probabilities here
)

fitdistr(x, "beta", list(shape1=1,shape2=1))

4. Use the app to see how the posterior changes as we flip the coin.
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https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
https://r.amherst.edu/apps/nhorton/Shiny-Bayes/
https://reichlab.shinyapps.io/bayes-beta-binomial/
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