
Writing functions in R

a statsTeachR resource

Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported
License: http://creativecommons.org/licenses/by-sa/3.0/deed.en US

http://statsteachr.org

Learning goals

At the end of this lecture you should be able to...

I Understand the elements that make up a function in R.

I Write a simple function in R.

2/12

What is a function?

A function is a pre-defined algorithm

I It takes arguments as inputs.

I It returns a defined output.

my_function <- function(arg1, arg2) {
this is the body of the function

...

return(something)

}

3/12

Why should I learn to write functions?

I If you repeat an operation within your code, consider
functionalizing it.

I Pick good, short, clear, active names.

I Creates standardized ways to perform certain operations

I Decreases likelihood of errors.

I You type less code, especially when changing one piece.

I Facilitates literate coding, makes things simpler.

I Makes debugging simpler.

4/12

What does this function calculate?

my_fun <- function(x) {
x is a numeric vector

y <- sum(x)/length(x)

return(y)

}

5/12

What does this function calculate?

my_fun <- function(x) {
x is a numeric vector

y <- sum(x)/length(x)

return(y)

}
a <- rnorm(100)

my_fun(a)

[1] -0.1281124

6/12

You can control what people put in

b <- c("fun", "with", "functions")

my_fun(b)

Error in sum(x): invalid ’type’ (character) of argument

my_fun <- function(x) {
if(class(x)!="numeric")

stop("x must be numeric")

y <- sum(x)/length(x)

return(y)

}
my_fun(b)

Error in my fun(b): x must be numeric

my_fun(a)

[1] -0.1281124

7/12

You can communicate with the user

Often these are couched in if-statements, i.e. “if some unusual
condition is met, here is something you should know”.

error_msg_fun <- function(x) {
message("Lift off!")

warning("Houston, we have a minor glitch. No biggie.")

stop("Houston, we have a major problem. ABORT!")

}
error_msg_fun(a)

Lift off!

Warning in error msg fun(a): Houston, we have a minor glitch.

No biggie.

Error in error msg fun(a): Houston, we have a major problem.

ABORT!

8/12

Other function features...

I You can add ‘...’ to the argument list for your function, to
enable the user to pass unspecified arguments to function calls
within the function.

I require() ensures that the necessary packages are loaded.
You should only use require() when defining functions,
otherwise, use library().

9/12

Other function features...

my_fun <- function(x, ...) {
require(ggplot2)

if(class(x)!="numeric")

stop("x must be numeric")

p <- qplot(x, ...)

print(p)

y <- sum(x)/length(x)

return(y)

}
my_fun(a)

[1] -0.1281124

0.0

2.5

5.0

7.5

−2 −1 0 1 2
x

co
un

t

10/12

Passing an argument

my_fun(a)

[1] -0.1281124

0.0
2.5
5.0
7.5

−2 −1 0 1 2
x

co
un

t

my_fun(a, alpha=0.1)

[1] -0.1281124

0.0
2.5
5.0
7.5

−2 −1 0 1 2
x

co
un

t 0.1

0.1

11/12

Lexical scoping

Scoping is largely beyond the scope of this course, but a few
important things:

I Scoping rules determine how “free variables” are assigned
values.

I Within functions, the safest/simplest thing is to make sure
that everything is defined explicitly within the function.

I R uses “Lexical scoping” which means it looks up undefined
variables in the environment where your function was defined!

More detail can be found in Hadley’s book.

12/12

http://adv-r.had.co.nz/Functions.html

