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Today’s Lecture

� What is statistical power?

� Why/how might we want to simulate it?

� An example



Refresher: statistical power

Definition of statistical power

� The ability of a method/test to detect an effect, conditional
on that effect actually existing.

� The probability that our test rejects the null hypothesis when
the null hypothesis is not true.

� Or, “finding a signal that is really there”



Characteristics that impact power

What imapct do increases in these features have on power?

� sample size

� effect size

� variance of outcome

� variance of predictors

� number of predictors

� grouped/clustered observations



Typical power curve

0.0

0.2

0.4

0.6

0.8

1.0

Sample size per cluster

P
ow

er

200 400 600 800 1000

Effect size
0.1

0.08

0.06

Reich NG, Myers JA, Obeng D, Milstone AM, Perl TM. Empirical power and sample size calculations for
cluster-randomized and cluster-randomized crossover studies. PLoS ONE. 2012. 7(4): e35564.



“Post-hoc” power calculations are controversial

It is always preferable to calculate power prior to running your
analysis. Better not to justify negative findings with a post-hoc
power calculation!

For more, see The Abuse of Power, among others.

http://www.vims.edu/people/hoenig_jm/pubs/hoenig2.pdf


Formula-based power calculation

Many simple tests have formulas for power, these ...

� are easy to use

� may require you to estimate parameters from existing data (or
make up justifiable numbers to plug in)

� are often appropriate for simple tests

� assume all standard assumptions are met

� are only available for simple/standard tests



Simulation-based power calculation

Calculating power via simulation is a tradeoff: computational
complexity for customization and flexibility.

Power simulations...

� are available for any setting where you can simulate data (not
limited to simple scenarios)

� can be used to preserve complex correlation sturctures in
predictors (resample your X ’s)

� are not assumption- or parameter-free

� often require more complicated coding

� may be computationally intensive (i.e. need a long time to
run)



Example: t-test power calculation “by hand”

T-test: comparing mean between two groups

� µ1 = 5, µ2 = 7

� σ2
1 = σ2

2 = 5 (assume known)

� n1 = n2 = 20

� Type I error rate = α = 0.05

� H0: µ1 − µ2 = 0

Power = 1− β = Pr

(
Z > 1.96− |µ1 − µ2|√

2σ2/n

)

pnorm(1.96 - 2/sqrt(2*5/20), lower.tail = FALSE)

## [1] 0.8074197



Example: t-test power calculation “black box”

Compare to another method, which uses numerical optimization

pnorm(1.96 - 2/sqrt(2*5/20), lower.tail = FALSE)

## [1] 0.8074197

power.t.test(n = 20, delta = 2, sd = sqrt(5), sig.level=0.05)

##

## Two-sample t test power calculation

##

## n = 20

## delta = 2

## sd = 2.236068

## sig.level = 0.05

## power = 0.7870829

## alternative = two.sided

##

## NOTE: n is number in *each* group



Example: t-test power calculation (graph)
Evaluate power across sample sizes

curve(pnorm(1.96 - 2/sqrt(2*5/x), lower.tail = FALSE),

from=5, to=40, ylab="power", xlab="n (per group)")

abline(h=.8, lty=2)
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Example: t-test power calculation “simulated”

nsim <- 1000

n <- 20

mu1 <- 5

mu2 <- 7

s2 <- 5

reject <- rep(0, nsim)

for(i in 1:nsim){
x <- rnorm(20, mean=mu1, sd=sqrt(s2))

y <- rnorm(20, mean=mu2, sd=sqrt(s2))

tt <- t.test(x, y)

reject[i] <- tt$p.value<.05

}
mean(reject)

## [1] 0.782



Power by simulation: two different flavors

Option 1: generate all data from scratch

� will generate “clean” data

� hard to insert authentic noise: outliers, missingness, correlated
predictor structure

Option 2: resample predictors from a training dataset,
simulate outcome

� preserves structure of real predictor data

� requires a large dataset similar to the one you will be analyzing

� you should not, in general, do this type of computation on the
actual dataset that you are analyzing – best to have a
“training” dataset, similar to but independent from the one
you will be analyzing



Power by simulation: resampling algorithm

Resampled power algorithm for regression-style models
Inputs: nsim; nobs, X , a nxp design matrix; a simulation model y ∼ f (X |θ), with
associated paramters; H0 to test; Type I error rate, α.

1. Define a zero vector r of length nsim.

2. for i in 1 : nsim do

3. Resample (with replacement) the rows of X to create Xi , a new nobsxp
design matrix.

4. Simulate y .

5. Fit the model, calculate test statistic for to test evidence for evaluating H0.

6. Save ri = 1 if p-value ≤ α.

7. Calculate power as 1− β = 1
nsim

∑nsim
i=1 ri .

Adapted from Kleinman and Huang (2014), and Meyers et al. (2014)

http://arxiv.org/abs/1410.3515
http://www.sciencedirect.com/science/article/pii/S0167947313003721


Power by resampling: example
You plan to do a follow-up study to the one that generated our lung dataset.
You want to replicate the results that show a significant impact of smoking on
the severity of disease. You don’t have a lot of money to conduct the study, so
you want to enroll as few participants as possible.

##

## Call:

## lm(formula = disease ~ nutrition + airqual + crowding + smoking,

## data = data)

##

## Residuals:

## Min 1Q Median 3Q Max

## -8.1297 -2.1834 -0.5716 1.9412 13.3260

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 11.863333 2.578819 4.600 1.32e-05 ***

## nutrition -0.032784 0.007954 -4.122 8.09e-05 ***

## airqual 0.257883 0.026799 9.623 1.17e-15 ***

## crowding 1.111126 0.102037 10.889 < 2e-16 ***

## smoking 4.960931 1.085292 4.571 1.48e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 3.644 on 94 degrees of freedom

## Multiple R-squared: 0.8664, Adjusted R-squared: 0.8607

## F-statistic: 152.4 on 4 and 94 DF, p-value: < 2.2e-16



Power by resampling: example

Inputs

I nsim = 1000

I X , taken from lung dataset.

I α = 0.05

I Simulation model:

yi = β0 +β1 ·Nuti +β2 · airquali +β3 · crowdi +β4 · smokei + εi

εi ∼ Normal(0, σ2)

I parameters, θ = (β0, ..., β4, σ
2) (taken from fitted model)

I H0: β4 = 0



Power by resampling: example code

nsim <- 1000

nobs <- 30

b0 <- coef(mlr)[1]

b1 <- coef(mlr)[2]

b2 <- coef(mlr)[3]

b3 <- coef(mlr)[4]

b4 <- coef(mlr)[5]

rej <- rep(0, nsim)

for(i in 1:nsim) {
tmp_idx <- sample(1:nrow(data), replace=TRUE, size=nobs)

new_data <- data[tmp_idx,]

err <- rnorm(nobs, 0, s=summary(mlr)$sigma)

new_data$dis <- with(new_data, b0 + b1*nutrition + b2*airqual +

b3*crowding + b4*smoking + err)

fm <- lm(dis ~ nutrition + airqual + crowding + smoking, data=new_data)

rej[i] <- summary(fm)$coef["smoking", "Pr(>|t|)"] > 0.05

}
(pwr <- sum(rej)/nsim)

## [1] 0.372



Power by resampling: example code

So we can say that if we were to repeat this study (in a similar
population) with a sample size of 30, our study would have 0.37 to
detect a true relationship between smoking and disease severity.



Power by simulation: wrap-up

� Power analyses can be a really useful tool to explore the
likelihood of your data analysis producing valuable results.

� Simulating power can be valuable in settings where there is no
simple formula for calculating power.

� It is also a good exercise to try to simulate your data – you
learn a lot about the structure of your data in the process!


