
Multiple Linear Regression:
Parameter Inference

Author: Nicholas G Reich, Jeff Goldsmith

This material is part of the statsTeachR project

Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported
License: http://creativecommons.org/licenses/by-sa/3.0/deed.en US



Today’s Lecture

� Sampling distribution of β̂

� Confidence intervals

� Hypothesis tests for individual coefficients

� Global tests (next week!)
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Statistical inference

� We have LSEs β̂0, β̂1, . . .; we want to know what this tells us
about β0, β1, . . ..

� Two basic tools are confidence intervals and hypothesis tests
I Confidence intervals provide a plausible range of values for the

parameter of interest based on the observed data
I Hypothesis tests ask how probable are the data we gathered

under a null hypothesis about the data generating distribution



Motivation

How can we draw inference about each of these parameters and
relationships that our model is encoding?

mlr1 <- lm(disease ~ airqual + crowding + nutrition + smoking,

data=dat)

summary(mlr1)$coef

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 11.86333314 2.578819159 4.600297 1.315919e-05

## airqual 0.25788257 0.026799356 9.622715 1.165263e-15

## crowding 1.11112603 0.102036855 10.889458 2.403742e-18

## nutrition -0.03278397 0.007953614 -4.121896 8.094957e-05

## smoking 4.96093131 1.085292354 4.571055 1.475259e-05



Motivation

� Can we say anything about whether the effect of airquality
is “significant” after adjusting for other variables?

� Can we say whether adding airquality improves the fit of
our model?

� Can we compare this model to a model with crowding,
nutrition and smoking?



Sampling distribution

If our usual assumptions are satisfied and ε
iid∼ N

[
0, σ2

]
then

β̂ ∼ N
[
β, σ2(XTX)−1

]
.

β̂j ∼ N
[
β, σ2(XTX)−1

jj

]
.

� This will be used later for inference.

� Even without Normal errors, asymptotic Normality of LSEs is
possible under reasonable assumptions.



Sampling distribution

For real data we have to estimate σ2 as well as β.

� Recall our estimate of the error variance is

σ̂2 =
RSS

n − p − 1
=

∑
i (yi − ŷi )

2

n − p − 1

� With Normally distributed errors, it can be shown that

(n − p − 1)
σ̂2

σ2
∼ χ2

n−p−1



Testing procedure

Calculate the probability of the observed data (or more extreme
data) under a null hypothesis.

� Often H0 : βj = 0 and Ha : βj 6= 0

� Set type I error rate
α = P(falsely rejecting a true null hypothesis)

� Calculate a test statistic assuming the null hypothesis is true

� Compute a p-value =

P(β̂j as or more extreme as observed|H0)

� Reject or fail to reject H0



Individual coefficients

For individual coefficients

� We can use the test statistic

T =
β̂j − βj
ŝe(β̂j)

=
β̂j − βj√
σ̂2(XTX)−1

jj

∼ tn−p−1

� For a two-sided test of size α, we reject if

|T | > t1−α/2,n−p−1

� The p-value gives P(tn−p−1 > Tobs |H0)

Note that t is a symmetric distribution that converges to a Normal
as n − p − 1 increses.



Back to the example

summary(mlr1)

##

## Call:

## lm(formula = disease ~ airqual + crowding + nutrition + smoking,

## data = dat)

##

## Residuals:

## Min 1Q Median 3Q Max

## -8.1297 -2.1834 -0.5716 1.9412 13.3260

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 11.863333 2.578819 4.600 1.32e-05 ***

## airqual 0.257883 0.026799 9.623 1.17e-15 ***

## crowding 1.111126 0.102037 10.889 < 2e-16 ***

## nutrition -0.032784 0.007954 -4.122 8.09e-05 ***

## smoking 4.960931 1.085292 4.571 1.48e-05 ***

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 3.644 on 94 degrees of freedom

## Multiple R-squared: 0.8664, Adjusted R-squared: 0.8607

## F-statistic: 152.4 on 4 and 94 DF, p-value: < 2.2e-16



Individual coefficients: CIs

Alternatively, we can construct a confidence interval for βj

� A confidence interval with coverage (1− α) is given by

βj ± t1−α/2,n−p−1ŝe(β̂j)

� Assuming all the standard assumptions hold,

(1− α) = P(LB < βj < UB)



Detour: confidence interval interpretations

The semantics of confidence intervals are tricky!

The technically correct interpretation of a (frequentist) confidence
interval is:
if the current experiment were repeated under similar conditions,
we expect that 1− α% of the time the confidence interval for a
parameter would cover the true value of the parameter.



Detour: confidence interval interpretations

Possible interpretations

� “There is a 95% probability that this confidence interval
contains the true value of the parameter.”
WRONG!

� “We are 95% confident that this interval contains the truth.”
NOT VERY TECHNICALLY SPECIFIC, BUT NOT
INCORRECT EITHER.

� “The 95% confidence interval for this parameter is (a, b).”
COMMONLY USED, ASSUMES THE READER KNOWS
HOW TO INTERPRET.

� “With confidence coefficient .95, we estimate that the average
change in Y per 1 unit increase of X lies somewhere between
(a and b).”
TECHNICALLY CORRECT, BUT NOT CLEAR WHAT
CONF COEF IS.



Back to the example

cbind(coef(mlr1), confint(mlr1))

## 2.5 % 97.5 %

## (Intercept) 11.86333314 6.74302724 16.98363903

## airqual 0.25788257 0.20467182 0.31109332

## crowding 1.11112603 0.90852947 1.31372260

## nutrition -0.03278397 -0.04857606 -0.01699189

## smoking 4.96093131 2.80605790 7.11580472



Confidence regions for multiple parameters

If you want to draw inference about multiple parameters, it is
better to look at them simultaneously.



Plotting 2D confidence regions

library(ellipse)

plot(ellipse(mlr1,c(2,3)),type="l")

points(coef(mlr1)[2],coef(mlr1)[3], pch=18)

abline(v=c(confint(mlr1)[2,1], confint(mlr1)[2,2]), lty=2)

abline(h=c(confint(mlr1)[3,1], confint(mlr1)[3,2]), lty=2)
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Today’s Big Ideas

� Basic parameter inference for multiple linear regression models



Lab on regression inference

Run the code for today’s class (on the website), and modify it to
answer the following questions:

� Compute the 95% confidence interval coverage for β1. What
is it and is it what you would expect?

� Given the constant values defined at the top of the file,
determine what the sampling distribution for β1 should be.
Using the estimated values of the β̂1, calulate summary
metrics and or use appropriate visualizations to determine
whether these your simulated distribution of β̂1 matches with
the theoretical distribution.

� Adapt the simulation to simulate data for two covariates, x1
and x2, using mvrnorm(). Define x1 and x2 so that you may
modify the degree of correlation between them. Run the
simulation again for two scenarios, one with low and one with
high correlation. For each of these scenarios, does the 95%
confidence interval coverage change?


