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Today's topics

m least squares for MLR: geometry, “hat matrix”
m collinearity and non-identifiability
m introduction to modeling non-linear relationships

Example predicting respiratory disease severity (“lung” dataset)
Holding off on inference/diagnostics for another week...



Multiple linear regression model

m Observe data (yj, xi1, - .., Xjp) for subjects 1,...,n. Want to
estimate (3o, 31, ..., Bp in the model

iid
Vi = Bo+ Bixip + ...+ Bixip + €5 € ~ (0,02)



Déja vu: MLR assumptions

Assumptions

m Residuals have mean zero, constant variance, are independent
m Often assuming linearity

m Our primary interest will be E(y|x)

m Estimation using least squares



Déja vu: Least squares

As in simple linear regression, we want to find the 3 that
minimizes the residual sum of squares.

RSS(B) =) e =¢€e¢

1

After taking the derivative, setting equal to zero, we obtain:

B=(XTX)"'XxTy



Déja vu: Sampling distribution of B3

If our usual assumptions are satisfied and N [0, 02] then
BN [B,02(XTx) .

m This will be used later for inference.

m Even without Normal errors, asymptotic Normality of LSEs is
possible under reasonable assumptions.



Déja vu: Definitions

n Fitted values: § = X3 = X(X"X)"*X"y = Hy

m Residuals / estimated errors: € =y — §

m Residual sum of squares: S._ é? =¢e'e
m Residual variance: 02 = ,,E,S,‘i 1

m Degrees of freedom: n—p —1



Déja vu: R? and sums of squares

Regression sum of squares SS,eg = > (¥i — ¥)?

= Residual sum of squares SSes = >_(yi — i)?
m Total sum of squares SSior = >_(yi — 7)?

m Coefficient of determination

p2_ 1 Xi—5)? _ X(i—9)

Yi—y)? i—7)?



Not so Déja vu: the “Hat matrix”

Some properties of the hat matrix:
m It is a projection matrix: HH=H
m It is symmetric: HT = H
m The residuals are € = (I — H)y

m The inner product of (I — H)y and Hy is zero (predicted
values and residuals are uncorrelated).



Projection space interpretation

The hat matrix projects y onto the column space of X.
Alternatively, minimizing the RSS(3) is equivalent to minimizing
the Euclidean distance between y and the column space of X.



Lung Data Example

99 observations on patients who have sought treatment for the
relief of respiratory disease symptoms. The dependent variable,
The variables are:

disease measure of disease severity (larger values indicates
more serious condition).

education highest grade completed

crowding measure of crowding of living quarters (larger
values indicate more crowding)

airqual measure of air quality at place of residence (larger
number indicates poorer quality)

nutrition nutritional status (larger number indicates better
nutrition)

smoking smoking status (1 if smoker, 0 if non-smoker)



Lung Data Example

qplot(crowding, disease, data=dat)
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Lung Data Example

gplot(education, disease, data=dat)

80
L]
70+ * o
L] L]
L] L]
L] L] hd
60 H
% L] ; L]
(1] H 3 i
[} L]
2 $ .
S50 $ Z L . e
L] L]
s . s .
g s L] o
40 - .
L] 8 ° L]
L] L]
304 *
T T T T
5.0 7.5 10.0 12.5

education




Lung Data Example

gplot(airqual, disease, data=dat)
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Lung Data Example

mlrl <- Im(disease crowding + education + airqual,
data=dat, x=TRUE, y=TRUE)
coef (mlrl)

## (Intercept) crowding education airqual
## -7.7505215  1.3127837  1.4376563 0.2880687

X = mlri$x
y = mlriy
(beta_hat = solve(t(X)%*%X) %*% t(X) %*h y )

## [,1]
## (Intercept) -7.7505215
## crowding 1.3127837

## education 1.4376563
## airqual 0.2880687



Least squares estimates: identifiability

N -1
3= (xTx) XTy
A condition on (XTX): must be invertible

m If (XTX) is singular, there are infinitely many least squares
solutions, making B non-identifiable (can’t choose between
different solutions)

m In practice, true non-identifiability (there really are infinite
solutions) is rare.

m More common, and perhaps more dangerous, is collinearity.



Causes of non-identifiability

m Can happen if X is not of full rank, i.e. the columns of X are
linearly dependent (for example, including weight in Kg and Ib
as predictors)

m Can happen if there are fewer data points than terms in X:
n < p (having 100 predictors and only 50 observations)

m Generally, the p X p matrix (XTX) is invertible if and only if
it has rank p.



Infinite solutions

Suppose | fit a model y; = By + P1xi1 + €;.
m | have estimates fio = 1,31 =2
m | put in a new variable x = x1

s My new model is y; = By + Bixi1 + Baxia + €;

m Possible least squares estimates that are equivalent to my first
model:
BO - la/BAl = 27@2
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Non-identifiability example: lung data

mlr3 <- lm(disease
coef (mlr3)

airqual, data=dat)
## (Intercept) airqual
## 35.4444812 0.3537389

dat$x2 <- dat$airqual/100
mlr4d <- Im(disease ~ airqual + x2, data=dat, x=TRUE)

coef (mlr4d)
## (Intercept) airqual x2
## 35.4444812 0.3537389 NA
X = mlrd$x

solve( t(X) %x% X)

## Error in solve.default(t(X) %*) X): system is computationally
singular: reciprocal condition number = 3.57906e-20



Non-identifiablity: causes and solutions

m Often due to data coding errors (variable duplication, scale
changes)

Pretty easy to detect and resolve

m Can be addressed using penalties (might come up much later)

A bigger problem is near-unidentifiability (collinearity)



Diagnosing collinearity

m Arises when variables are highly correlated, but not exact
duplicates

m Commonly arises in data (perfect correlation is usually there
by mistake)

m Might exist between several variables, i.e. a linear
combination of several variables exists in the data

= A variety of tools exist (correlation analyses, multiple R?,
eigen decompositions)



Effects of collinearity

Suppose | fit a model y; = By + P1xi1 + €;.

m | have estimates BO = 1,/3’1 =2

m | put in a new variable xo = x3 + error, where error is pretty
small
My new model is y; = 5o + S1xi1 + B2Xi2 + €

Possible least squares estimates that are nearly equivalent to
my first model:

30—131—232—0
50—151—052—2
Bo =1, 5, = 1002, B, = —1000

vV vy vVvYyy

A unique solution exists, but it is hard to find



Effects of collinearity

m Collinearity results in a “flat” RSS
m Makes identifying a unique solution difficult
m Dramatically inflates the variance of LSEs



Collinearity example: lung data

dat$crowd2 <- dat$crowding + rnorm(nrow(dat), sd=.1)
mlr5 <- Im(disease ~ crowding, data=dat)
summary (mlr5)$coef

## Estimate Std. Error t value Pr>ltl)
## (Intercept) 12.991536 3.4750250 3.738544 3.130355e-04
## crowding 1.508806 0.1393709 10.825836 2.231686e-18

mlr6 <- Im(disease ~ crowding + crowd2, data=dat)

summary (mlr6) $coef

## Estimate Std. Error t value Pr(>ltl)
## (Intercept) 13.019617 3.490168 3.7303699 0.0003236495
## crowding -1.510590 6.883739 -0.2194432 0.8267707628

## crowd2 3.017039 6.876945 0.4387180 0.6618516741



Some take away messages

m Collinearity can (and does) happen, so be careful

m Often contributes to the problem of variable selection, which
we'll touch on later



Non-linear relationships: polynomial regression

Many relationships between X and Y are non-linear. A simple (not
necessarily the best) way to account for this is using polynomial
forms of X.

m Model of the form

.
Yi = Bo+ Bixi + Box? + ...+ BoxP + €i; € ~ (0,07)

p is the polynomial order

More polynomial terms can lead to a better approximation of
E(y|x), but also higher variability in the fit

m Conversely, smaller p can lead to inability to capture E(y|x),
but is often more stable

Quadratic and cubic fits are relatively common



Non-linear relationships

Some tips on non-linear relationships
m You can go as high as p = n, but don't do it! “Overfitting”
data is common practice (unfortunately).

m Coefficients become harder to interpret — you can't increase x»
without changing every other x,

m Better (maybe) to think of the model as an estimated curve,
whose interpretation is related to the derivative

m The literal formulation above is numerically unstable. Better
to use orthogonal polynomials (R's poly function)



Non-linear

relationships
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Non-linear
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Non-linear relationships

(p <- ggplot(dat, aes(x=education, y=disease)) + geom_point() +
geom_smooth (method="1m", se=FALSE) )
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Non-linear relationships

mlr3 <- Im(disease ~ poly(education, 2), data=dat)

coef (m1lr3)
## (Intercept) poly(education, 2)1 poly(education, 2)2
## 49.91919 43.95171 -18.46921

(p <- p + geom_line(aes(y=predict(mlr3)), color="red") )
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Non-linear relationships

mlrd <- lm(disease
coef (mlr4)

poly(education, 5), data=dat)

## (Intercept) poly(education, 5)1 poly(education, 5)2
## 49.919192 43.951707 -18.469208
## poly(education, 5)3 poly(education, 5)4 poly(education, 5)5
## -4.131932 -4.651902 7.896361

(p <- p + geom_line(aes(y=predict(mlr4)), color="green"))
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Smoothing and splines

Turns out there's a lot of work on estimating smooth
E(ylx) = f(x)
m Rather than polynomials, use smooth spline basis functions
with nice properties (stable, smooth, flexible, smooth
derivatives)

m These are piecewise polynomials
m How many to use governs how smooth or wiggly the final fit is

m Can introduce explicit penalties for smoothness, which gets
you into semi-parametric regression ...



Today's big ideas

m least squares geometry, “hat matrix”
m dangers of collinearity and non-identifiability

m polynomial regression to model non-linear relationships



Lab

Analyze the NHANES dataset. Create a model with the outcome
variable of cholesterol (chol) that estimates relationships with
other variables in the dataset.

library (NHANES)
data (NHANES)
?NHANES



