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Today’s topics

� least squares for MLR: geometry, “hat matrix”

� collinearity and non-identifiability

� introduction to modeling non-linear relationships

Example predicting respiratory disease severity (“lung” dataset)
Holding off on inference/diagnostics for another week...



Multiple linear regression model

� Observe data (yi , xi1, . . . , xip) for subjects 1, . . . , n. Want to
estimate β0, β1, . . . , βp in the model

yi = β0 + β1xi1 + . . .+ β1xip + εi ; εi
iid∼ (0, σ2)



Déjà vu: MLR assumptions

Assumptions

� Residuals have mean zero, constant variance, are independent

� Often assuming linearity

� Our primary interest will be E (y |x)

� Estimation using least squares



Déjà vu: Least squares

As in simple linear regression, we want to find the β that
minimizes the residual sum of squares.

RSS(β) =
∑
i

ε2i = εT ε

After taking the derivative, setting equal to zero, we obtain:

β̂ = (XTX)−1XTy



Déjà vu: Sampling distribution of β̂

If our usual assumptions are satisfied and ε
iid∼ N

[
0, σ2

]
then

β̂ ∼ N
[
β, σ2(XTX)−1

]
.

� This will be used later for inference.

� Even without Normal errors, asymptotic Normality of LSEs is
possible under reasonable assumptions.



Déjà vu: Definitions

� Fitted values: ŷ = Xβ̂ = X(XTX)−1XTy = Hy

� Residuals / estimated errors: ε̂ = y − ŷ

� Residual sum of squares:
∑n

i=1 ε̂i
2 = ε̂T ε̂

� Residual variance: σ̂2 = RSS
n−p−1

� Degrees of freedom: n − p − 1



Déjà vu: R2 and sums of squares

� Regression sum of squares SSreg =
∑

(ŷi − ȳ)2

� Residual sum of squares SSres =
∑

(yi − ŷi )
2

� Total sum of squares SStot =
∑

(yi − ȳ)2

� Coefficient of determination

R2 = 1−
∑

(yi − ŷi )
2∑

(yi − ȳ)2
=

∑
(ŷi − ȳ)2∑
(yi − ȳ)2



Not so Déjà vu: the “Hat matrix”

Some properties of the hat matrix:

� It is a projection matrix: HH = H

� It is symmetric: HT = H

� The residuals are ε̂ = (I−H)y

� The inner product of (I−H)y and Hy is zero (predicted
values and residuals are uncorrelated).



Projection space interpretation

The hat matrix projects y onto the column space of X.
Alternatively, minimizing the RSS(β) is equivalent to minimizing
the Euclidean distance between y and the column space of X.



Lung Data Example

99 observations on patients who have sought treatment for the
relief of respiratory disease symptoms. The dependent variable,
The variables are:

� disease measure of disease severity (larger values indicates
more serious condition).

� education highest grade completed

� crowding measure of crowding of living quarters (larger
values indicate more crowding)

� airqual measure of air quality at place of residence (larger
number indicates poorer quality)

� nutrition nutritional status (larger number indicates better
nutrition)

� smoking smoking status (1 if smoker, 0 if non-smoker)



Lung Data Example

qplot(crowding, disease, data=dat)

30

40

50

60

70

80

20 30 40
crowding

di
se

as
e



Lung Data Example

qplot(education, disease, data=dat)
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Lung Data Example

qplot(airqual, disease, data=dat)
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Lung Data Example

mlr1 <- lm(disease ~ crowding + education + airqual,

data=dat, x=TRUE, y=TRUE)

coef(mlr1)

## (Intercept) crowding education airqual

## -7.7505215 1.3127837 1.4376563 0.2880687

X = mlr1$x

y = mlr1$y

(beta_hat = solve(t(X)%*%X) %*% t(X) %*% y )

## [,1]

## (Intercept) -7.7505215

## crowding 1.3127837

## education 1.4376563

## airqual 0.2880687



Least squares estimates: identifiability

β̂ =
(

XTX
)−1

XTy

A condition on
(
XTX

)
: must be invertible

� If
(
XTX

)
is singular, there are infinitely many least squares

solutions, making β̂ non-identifiable (can’t choose between
different solutions)

� In practice, true non-identifiability (there really are infinite
solutions) is rare.

� More common, and perhaps more dangerous, is collinearity.



Causes of non-identifiability

� Can happen if X is not of full rank, i.e. the columns of X are
linearly dependent (for example, including weight in Kg and lb
as predictors)

� Can happen if there are fewer data points than terms in X:
n < p (having 100 predictors and only 50 observations)

� Generally, the p × p matrix
(
XTX

)
is invertible if and only if

it has rank p.



Infinite solutions

Suppose I fit a model yi = β0 + β1xi1 + εi .

� I have estimates β̂0 = 1, β̂1 = 2

� I put in a new variable x2 = x1

� My new model is yi = β0 + β1xi1 + β2xi2 + εi
� Possible least squares estimates that are equivalent to my first

model:
I β̂0 = 1, β̂1 = 2, β̂2 = 0
I β̂0 = 1, β̂1 = 0, β̂2 = 2
I β̂0 = 1, β̂1 = 1002, β̂2 = −1000
I . . .



Non-identifiability example: lung data

mlr3 <- lm(disease ~ airqual, data=dat)

coef(mlr3)

## (Intercept) airqual

## 35.4444812 0.3537389

dat$x2 <- dat$airqual/100

mlr4 <- lm(disease ~ airqual + x2, data=dat, x=TRUE)

coef(mlr4)

## (Intercept) airqual x2

## 35.4444812 0.3537389 NA

X = mlr4$x

solve( t(X) %*% X)

## Error in solve.default(t(X) %*% X): system is computationally

singular: reciprocal condition number = 3.57906e-20



Non-identifiablity: causes and solutions

� Often due to data coding errors (variable duplication, scale
changes)

� Pretty easy to detect and resolve

� Can be addressed using penalties (might come up much later)

� A bigger problem is near-unidentifiability (collinearity)



Diagnosing collinearity

� Arises when variables are highly correlated, but not exact
duplicates

� Commonly arises in data (perfect correlation is usually there
by mistake)

� Might exist between several variables, i.e. a linear
combination of several variables exists in the data

� A variety of tools exist (correlation analyses, multiple R2,
eigen decompositions)



Effects of collinearity

Suppose I fit a model yi = β0 + β1xi1 + εi .

� I have estimates β̂0 = 1, β̂1 = 2

� I put in a new variable x2 = x1 + error , where error is pretty
small

� My new model is yi = β0 + β1xi1 + β2xi2 + εi
� Possible least squares estimates that are nearly equivalent to

my first model:
I β̂0 = 1, β̂1 = 2, β̂2 = 0
I β̂0 = 1, β̂1 = 0, β̂2 = 2
I β̂0 = 1, β̂1 = 1002, β̂2 = −1000
I . . .

� A unique solution exists, but it is hard to find



Effects of collinearity

� Collinearity results in a “flat” RSS

� Makes identifying a unique solution difficult

� Dramatically inflates the variance of LSEs



Collinearity example: lung data

dat$crowd2 <- dat$crowding + rnorm(nrow(dat), sd=.1)

mlr5 <- lm(disease ~ crowding, data=dat)

summary(mlr5)$coef

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 12.991536 3.4750250 3.738544 3.130355e-04

## crowding 1.508806 0.1393709 10.825836 2.231686e-18

mlr6 <- lm(disease ~ crowding + crowd2, data=dat)

summary(mlr6)$coef

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 13.019617 3.490168 3.7303699 0.0003236495

## crowding -1.510590 6.883739 -0.2194432 0.8267707628

## crowd2 3.017039 6.876945 0.4387180 0.6618516741



Some take away messages

� Collinearity can (and does) happen, so be careful

� Often contributes to the problem of variable selection, which
we’ll touch on later



Non-linear relationships: polynomial regression

Many relationships between X and Y are non-linear. A simple (not
necessarily the best) way to account for this is using polynomial
forms of X.

� Model of the form

yi = β0 + β1xi + β2x
2
i + . . .+ βpx

p
i + εi ; εi

iid∼ (0, σ2)

� p is the polynomial order

� More polynomial terms can lead to a better approximation of
E (y |x), but also higher variability in the fit

� Conversely, smaller p can lead to inability to capture E (y |x),
but is often more stable

� Quadratic and cubic fits are relatively common



Non-linear relationships

Some tips on non-linear relationships

� You can go as high as p = n, but don’t do it! “Overfitting”
data is common practice (unfortunately).

� Coefficients become harder to interpret – you can’t increase x2
without changing every other xp

� Better (maybe) to think of the model as an estimated curve,
whose interpretation is related to the derivative

� The literal formulation above is numerically unstable. Better
to use orthogonal polynomials (R’s poly function)



Non-linear relationships
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Non-linear relationships
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Non-linear relationships
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Non-linear relationships
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Non-linear relationships

(p <- ggplot(dat, aes(x=education, y=disease)) + geom_point() +

geom_smooth(method="lm", se=FALSE) )
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Non-linear relationships

mlr3 <- lm(disease ~ poly(education, 2), data=dat)

coef(mlr3)

## (Intercept) poly(education, 2)1 poly(education, 2)2

## 49.91919 43.95171 -18.46921

(p <- p + geom_line(aes(y=predict(mlr3)), color="red") )
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Non-linear relationships

mlr4 <- lm(disease ~ poly(education, 5), data=dat)

coef(mlr4)

## (Intercept) poly(education, 5)1 poly(education, 5)2

## 49.919192 43.951707 -18.469208

## poly(education, 5)3 poly(education, 5)4 poly(education, 5)5

## -4.131932 -4.651902 7.896361

(p <- p + geom_line(aes(y=predict(mlr4)), color="green"))
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Smoothing and splines

Turns out there’s a lot of work on estimating smooth
E (y |x) = f (x)

� Rather than polynomials, use smooth spline basis functions
with nice properties (stable, smooth, flexible, smooth
derivatives)

� These are piecewise polynomials

� How many to use governs how smooth or wiggly the final fit is

� Can introduce explicit penalties for smoothness, which gets
you into semi-parametric regression ...



Today’s big ideas

� least squares geometry, “hat matrix”

� dangers of collinearity and non-identifiability

� polynomial regression to model non-linear relationships



Lab

Analyze the NHANES dataset. Create a model with the outcome
variable of cholesterol (chol) that estimates relationships with
other variables in the dataset.

library(NHANES)

data(NHANES)

?NHANES


