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Today's topics

m least squares for MLR: geometry, “hat matrix”
m collinearity and non-identifiability
m introduction to modeling non-linear relationships

Example predicting respiratory disease severity (“lung” dataset)
Holding off on inference/diagnostics for another week...



Multiple linear regression model

m Observe data (yj, xi1, - .., Xjp) for subjects 1,...,n. Want to
estimate (3o, 31, ..., Bp in the model

iid
yi=PBo+ Pixirt + ...+ B?Xip +¢€i; €~ (0,02)



Déja vu: MLR assumptions
—_—

Assumptions

/esiduals have mean zero, constant variance, are independent
[ ]

ften assuming linearity

\/" =,Our primary interest will be E(y|x)
\/Estimation using least squares



Déja vu: Least squares

=
As in simple linear regression, we want to find the 3 that
minimizes the residual sum of squares.

RSS(B) =) e =€

A

After taking the derivative, setting equal to zero, we obtain:
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Déja vu: Sampling distribution of B3

If our usual assumptions are satisfied and N [0, 02] then
BN [B,02(XTx) .

m This will be used later for inference.
A

m Even without Normal errors, asymptotic Normality of LSEs is
possible under reasonable assumptions.



Déja vu: Definitions

t( Fitted values: § = X3 = X(X"X) X"y = Hy

® Residuals / estimated errors: € =y — §

Residual sum of squares: S\, &% =&'e
\/ Residual variance: 02 = — fﬁ‘i 1
Degrees of freedom: n—p —1
—
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Déja vu: R? and sums of squares

Regression sum of squares SS,eg = > (9i — ¥)?

= Residual sum of squares SSes = >_(yi — i)?
m Total sum of squares SSior = > (yi — 7)?

m Coefficient of determination

p2_ 1 Xi—9)? _ X(i—9)

Yi—y)? Xi—7)?



Not so Déja vu: the “Hat matrix”

Some properties of the hat matrix:
m It is a projection matrix: HH =H
m It is symmetric: H” = H
m The residuals are é = (I — = X ‘g. Hg 3 —a

The inner product of (I — H)y and Hy is zero (predicted
values and residuals are uncorrelated).



Projection space interpretation

The hat matrix projects y onto the column space of X.
Alternatively, minimizing the RSS(3) is equivalent to minimizing
the Euclidean distance between y and the column space of X.

‘3/\- (1-Hy==

Co’vbsseua. OFX = C 0<) .
B, Xir b Xaspyxy = A gossible lirur tanchems of X



Lung Data Example

99 observations on patients who have sought treatment for the

relief of respiratory disease symptoms. “Thecperdencrarase"

The variables are:

m disease measure of disease severity (larger values indicates
more serious condition).

m education highest grade completed
m crowding measure of crowding of living quarters (larger
values indicate more crowding)

m airqual measure of air quality at place of residence (larger
number indicates poorer quality)

Continvoug

m nutrition nutritional status (larger number indicates better
nutrition)

m smoking smoking status (1 if smoker, 0 if non-smoker)

48
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Lung Data Example

qplot(crowding, disease, data=dat)
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Lung Data Example

gplot(education, disease, data=dat)
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Lung Data Example

gplot(airqual, disease, data=dat)
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Lung Data Example

- |

+0

mlrl <- Im(disease ~ crowding + education + airqual,
data=dat, x=TRUE, y=TRUE)
— ——
coef (mlrl)

n—

## (Intercept) crowding  education airqual
## -7.7505215 1.3127837 1.4376563  0.2880687
—

———— —

X = mlrig$x —
y = mlriy
(beta_hat = ‘solve(t(X)%*%X) %*% t(X) %*% v )

o) -r
## [,1] X ._(X-rX) X
## (Intercept) -7.7505215 = 2

## crowding 1.3127837
## education 1.4376563
## airqual 0.2880687

Y- betu_ \ak



Least squares estimates: identifiability

N -1
3= (xTx) XTy
A condition on (XTX): must be invertible

m If (XTX) is singular, there are infinitely many least squares
solutions, making B non-identifiable (can’t choose between
different solutions)

m In practice, true non-identifiability (there really are infinite
solutions) is rare.

m More common, and perhaps more dangerous, is collinearity.



Causes of non-identifiability

m Can happen if X is not of full rank, i.e. the columns of X are
linearly dependent (for example, including weight in Kg and Ib
as predictors)

m Can happen if there are fewer data points than terms in X:
n < p (having 100 predictors and only 50 observations)

m Generally, the p X p matrix (XTX) is invertible if and only if
it has rank p.



Infinite solutions

Suppose | fit a model y; = By + P1xi1 + €;.
m | have estimates fio = 1,31 =2

m | put in a new variable x = x;

s My new model is y; = By + Bixi1 + Baxia + €;

m Possible least squares estimates that are equivalent to my first

model:
’@021,@1 25:
» bo=1,01=0,/20=2 DAL
o = 1,5 = 1002, 3, = —1000 P LD

=0 =Wl Rss(r)= (e
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Non-identifiability example: lung data

mlr3 <- lm(disease
coef (mlr3)

airqual, data=dat)

## (Intercept) airqual
## 35.4444812  0.3537389

dat$x2 <- dat$airq_ua1/10()é_’

mlr4d <- Im(disease ~ airqual + x2, data=dat, x=TRUE)

coef (mlr4)

## (Intercept) airqual x2 j  —

## 35.4444812 0.3537389 NA

X = mlrd$x "

solve( t(X) %x% X)

## Error in solve.default(t(X) %x% X): system is computationally

singular: reciprocal condition number = 3.57906e-20
—_—



Non-identifiablity: causes and solutions

m Often due to data coding errors (variable duplication, scale
changes)

Pretty easy to detect and resolve

m Can be addressed using penalties (might come up much later)

A bigger problem is near-unidentifiability (collinearity)



Diagnosing collinearity

m Arises when variables are highly correlated, but not exact
duplicates

m Commonly arises in data (perfect correlation is usually there
by mistake)

m Might exist between several variables, i.e. a linear
combination of several variables exists in the data

= A variety of tools exist (correlation analyses, multiple R?,
eigen decompositions)



Effects of collinearity

Suppose | fit a model y; = By + P1xi1 + €;.
m | have estimates BO = 1,/3’1 =2

m | put in a new variable xo = x3 + error, where error is pretty
—
small

My new model is y; = 8o + f1Xj1 + Baxi2 + €;

Possible least squares estimates that are nearly equivalent to
my first model: ==
Bo=1,01=2,0,=0

ﬁo—l 51—0 52—2

Bo =1, 5 = 1002, 3, = —1000

vV vy vVvyy

A unique solution exists, but it is hard to find

—



Effects of collinearity

m Collinearity results in a “flat” RSS
m Makes identifying a unique solution difficult

m Dramatically inflates the variance of LSEs Q——‘

g | N




Collinearity example: lung data

Xl-]—gf‘""of

d2 <- dat$crowding + rnorm(nrow(dat), sd=.1)

mlr5 <- Im(disease ~ crowding, data=dat) —
summary (mlr5) $coef
## Estimate Std. Error t value Pr>ltl)

## (Intercept) 12. 3.4750250 3.738544 3.130355e-04
## crowding (@ 1.508806 .1393709 10.825836 2.231686e-18
—

mlr6 <- lm(disease

crowding + crowd2, data=dat)
summary (mlr6) $coef

## Estimate Std. Error t value Pr(>ltl)

## (Intercept) 13.019617  3.490168 3.7303699 0.0003236495
## crowding w 6.883739 -0.2194432 0.8267707628
## crowd2 3.017030  6.876945 0.4387180 0.6618516741

—



Some take away messages

m Collinearity can (and does) happen, so be careful

m Often contributes to the problem of variable selection, which
we'll touch on later



Non-linear relationships: polynomial regression

Many relationships between X and Y are non-linear. A simple (not
necessarily the best) way to account for this is using polynomial
forms of X.

m Model of the form
Vi = Bo+ Bixi + BoxP + ...+ BpxP + i € < (0,0?)

- Lt -—

p is the polynomial order

More polynomial terms can lead to a better approximation of
E(y|x), but also higher variability in the fit

m Conversely, smaller p can lead to inability to capture E(y|x),
but is often more stable

Quadratic and cubic fits are relatively common



Non-linear relationships

Some tips on non-linear relationships

m You can go as high as p = n, but don't do it! “Overfitting”
data is common practice (unfortunately).

m Coefficients become harder to interpret — you can't increase x»

without changing every other x,

m Better (maybe) to think of the model as an estimated curve,
whose interpretation is related to the derivative /

m The literal formulation above is numerically unstable. Better

to use orthogonal polynomials (R's poly function)
.



Non-linear

relationships
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Non-linear relationships




Non-linear

relationships
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Non-linear relationships

(p <- ggplot(dat, aes(x=education, y=disease)) + geom_point() +
geom_smooth(method="1m", se=FALSE) )
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Non-linear relationships

mlr3 <- Im(disease ~ poly(education, 2), data=dat)

coef (m1lr3) —
#it (Intercept) poly(education, 2)1 poly(education, 2)2
## 49.91919 43.95171 -18.46921

(p <- p + geom_line(aes(y=predict(mlr3)), color="red") )
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Non-linear relationships

mlr4d <- Im(disease ~ poly(educatjon, 5), data=dat)
coef (mlr4) * =

## (Intercept) poly(education, 5)1 poly(education, 5)2
## 49.919192 43.951707 -18.469208
## poly(education, 5)3 poly(education, 5)4 poly(education, 5)5
## -4.131932 -4.651902 7.896361

(p <- p + geom_line(aes(y=predict(mlr4)), color="green"))
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Smoothing and splines

Turns out there's a lot of work on estimating smooth
E(ylx) = f(x)
m Rather than polynomials, use smooth spline basis functions
with nice properties (stable, smooth, flexible, smooth
derivatives)

m These are piecewise polynomials
m How many to use governs how smooth or wiggly the final fit is

m Can introduce explicit penalties for smoothness, which gets
you into semi-parametric regression ...



Today's big ideas

m least squares geometry, “hat matrix”
m dangers of collinearity and non-identifiability

m polynomial regression to model non-linear relationships



Lab

Analyze the NHANES dataset. Create a model with the outcome
variable of cholesterol (chol) that estimates relationships with
other variables in the dataset.

library (NHANES)
data (NHANES)
?NHANES



