Multiple Linear Regression: Least squares and non-linearity

Author: Nicholas G Reich, Jeff Goldsmith

This material is part of the statsTeachR project
Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

Today's topics

- least squares for MLR: geometry, "hat matrix"
- collinearity and non-identifiability
- introduction to modeling non-linear relationships

Example predicting respiratory disease severity ("lung" dataset) Holding off on inference/diagnostics for another week...

Multiple linear regression model

■ Observe data $\left(y_{i}, x_{i 1}, \ldots, x_{i p}\right)$ for subjects $1, \ldots, n$. Want to estimate $\beta_{0}, \beta_{1}, \ldots, \beta_{p}$ in the model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\ldots+\beta \boldsymbol{p}_{i p}+\epsilon_{i} ; \epsilon_{i} \stackrel{i i d}{\sim}\left(0, \sigma^{2}\right)
$$

Déjà vu: MLR assumptions

Assumptions

Residuals have mean zero, constant variance, are independent
Often assuming linearity
Our primary interest will be $E(y \mid \mathbf{x})$
Estimation using least squares

Déjà vu: Least squares

As in simple linear regression, we want to find the $\overrightarrow{\boldsymbol{\beta}}$ that minimizes the residual sum of squares.

$$
\operatorname{RSS}(\boldsymbol{\beta})=\sum_{i} \epsilon_{i}^{2}=\epsilon^{T} \epsilon
$$

After taking the derivative, setting equal to zero, we obtain:

$$
\hat{\hat{B}_{1}} \begin{aligned}
& \hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} \mathbf{y} \\
& \hat{\hat{\beta}^{\prime}}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i} \bar{x}\right)^{2}}
\end{aligned}
$$

Déjà vu: Sampling distribution of $\hat{\boldsymbol{\beta}}$

If our usual assumptions are satisfied and $\epsilon \stackrel{i i d}{\sim} N\left[0, \sigma^{2}\right]$ then

$$
\hat{\boldsymbol{\beta}} \sim \mathrm{N}\left[\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right] .
$$

- This will be used later for inference.
- Even without Normal errors, asymptotic Normality of LSEs is possible under reasonable assumptions.

Déjà vu: Definitions

H

Fitted values: $\hat{\mathbf{y}}=\mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}=\mathbf{H y}$

- Residuals / estimated errors: $\hat{\boldsymbol{\epsilon}}=\mathbf{y}-\hat{\mathbf{y}}$

Residual sum of squares: $\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}=\hat{\boldsymbol{\epsilon}}^{T} \hat{\boldsymbol{\epsilon}}$
Residual variance: $\hat{\sigma^{2}}=\frac{R S S}{n-p-1}$
Degrees of freedom: $n-p-1$

$$
\rho=\# \text { not puclictors }
$$

Déjà vu: R^{2} and sums of squares

- Residual sum of squares $S S_{\text {res }}=\sum\left(y_{i}-\hat{y}_{i}\right)^{2}$
- Total sum of squares $S S_{t o t}=\sum\left(y_{i}-\bar{y}\right)^{2}$
- Coefficient of determination

$$
R^{2}=1-\frac{\sum\left(y_{i}-\hat{y}_{i}\right)^{2}}{\sum\left(y_{i}-\bar{y}\right)^{2}}=\frac{\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum\left(y_{i}-\bar{y}\right)^{2}}
$$

Not so Déjà vu: the "Hat matrix"

Some properties of the hat matrix:

- It is a projection matrix: $\mathbf{H H}=\mathbf{H}$
- It is symmetric: $\mathbf{H}^{T}=\mathbf{H}$
- The residuals are $\hat{\epsilon}=(\mathbf{I}-\mathbf{H}) \mathbf{y}=I y-H y=y-\hat{y}$
. The inner product of $(\mathbf{I}-\mathbf{H}) \mathbf{y}$ and $\mathbf{H y}$ is zero (predicted values and residuals are uncorrelated).

Projection space interpretation
The hat matrix projects \mathbf{y} onto the column space of \mathbf{X}. Alternatively, minimizing the $R S S(\boldsymbol{\beta})$ is equivalent to minimizing the Euclidean distance between \mathbf{y} and the column space of \mathbf{X}.

Columenspace of $X=C(X)$

$$
\beta_{1} \vec{x}_{1}+\beta_{2} \vec{x}_{2}+\beta_{3} \stackrel{\rightharpoonup}{x}_{3}=\text { All possible liver combiners of } x
$$

Lung Data Example

99 observations on patients who have sought treatment for the relief of respiratory disease symptoms. Ther The variables are:

- disease measure of disease severity (larger values indicates more serious condition).
- education highest grade completed
- crowding measure of crowding of living quarters (larger values indicate more crowding)
- airqual measure of air quality at place of residence (larger number indicates poorer quality)
- nutrition nutritional status (larger number indicates better nutrition)
$\mathrm{t}_{\text {bimacy }}$

Lung Data Example

qplot(crowding, disease, data=dat)

Lung Data Example

qplot(education, disease, data=dat)

Lung Data Example

qplot(airqual, disease, data=dat)

Lung Data Example
mlr1 <- lm(disease ~ crowding + education + airqual, data=dat, $x=$ TRUE, $y=$ TRUE)
coef(mlr1)

\#\# (Intercept)	crowding	education	airqual	
\#\#	-7.7505215	1.3127837	1.4376563	0.2880687

$X=m l r 1 \$ x$
$\mathrm{y}=\mathrm{mlr} 1 \$ \mathrm{y}$
(beta_hat $=$ solve (t(X) $\% * \% \mathrm{X}) \% * \%$ t (X) $\% * \%$ y)
\#\# [,1]
\#\# (Intercept) -7.7505215
\#\# crowding 1.3127837
\#\# education 1.4376563
\#\# airqual 0.2880687
y-betu-lat

Least squares estimates: identifiability

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

A condition on $\left(\mathbf{X}^{\top} \mathbf{X}\right)$: must be invertible

- If $\left(\mathbf{X}^{T} \mathbf{X}\right)$ is singular, there are infinitely many least squares solutions, making $\hat{\boldsymbol{\beta}}$ non-identifiable (can't choose between different solutions)
- In practice, true non-identifiability (there really are infinite solutions) is rare.
- More common, and perhaps more dangerous, is collinearity.

Causes of non-identifiability

- Can happen if \mathbf{X} is not of full rank, i.e. the columns of \mathbf{X} are linearly dependent (for example, including weight in Kg and lb as predictors)
- Can happen if there are fewer data points than terms in \mathbf{X} : $n<p$ (having 100 predictors and only 50 observations)
- Generally, the $p \times p$ matrix $\left(\mathbf{X}^{T} \mathbf{X}\right)$ is invertible if and only if it has rank p.

Infinite solutions

Suppose I fit a model $y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\epsilon_{i}$.

- I have estimates $\hat{\beta}_{0}=1, \hat{\beta}_{1}=2$
- I put in a new variable $x_{2}=x_{1}$
- My new model is $y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\epsilon_{i}$
- Possible least squares estimates that are equivalent to my first model:
- $\hat{\beta}_{0}=1, \hat{\beta}_{1}=2, \hat{\beta}_{2}=0 \Rightarrow m 1$
- $\hat{\beta}_{0}=1, \hat{\beta}_{1}=0, \hat{\beta}_{2}=2 \Rightarrow \boldsymbol{h} 2$
$\begin{aligned} \operatorname{RSS}\left(m_{1}\right) & =\operatorname{RSS}\left(m_{2}\right) \\ & =\operatorname{RSS}\left(m_{3}\right)\end{aligned}$
- $\hat{\beta}_{0}=1, \hat{\beta}_{1}=1002, \hat{\beta}_{2}=-1000 \Rightarrow \boldsymbol{M}^{3}$

Non-identifiability example: lung data

mlr3 <- lm(disease ~ airqual, data=dat) coef (mlr3)

```
## (Intercept) airqual
## 35.4444812 0.3537389
```

dat $\$ x 2<-$ dat\$airqual/100
mlr4 <- lm(disease \sim airqual +x 2 , data=dat, $\mathrm{x}=\mathrm{TRUE})$
coef(mlr4)

\#\# (Intercept)	airqual	
\#\#	35.4444812	0.3537389

$\mathrm{X}=\mathrm{mlr} 4 \$ \mathrm{x}$
solve($\mathrm{t}(\mathrm{X}) \% * \% \mathrm{X})$
\#\# Error in solve.default(t(X) \%*\% X): system is computationally singular: reciprocal condition number $=3.57906 \mathrm{e}-20$

Non-identifiablity: causes and solutions

- Often due to data coding errors (variable duplication, scale changes)
- Pretty easy to detect and resolve
- Can be addressed using penalties (might come up much later)
- A bigger problem is near-unidentifiability (collinearity)

Diagnosing collinearity

- Arises when variables are highly correlated, but not exact duplicates
- Commonly arises in data (perfect correlation is usually there by mistake)
- Might exist between several variables, i.e. a linear combination of several variables exists in the data
- A variety of tools exist (correlation analyses, multiple R^{2}, eigen decompositions)

Effects of collinearity

Suppose I fit a model $y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\epsilon_{i}$.

- I have estimates $\hat{\beta}_{0}=1, \hat{\beta}_{1}=2$
- I put in a new variable $x_{2}=x_{1}+$ error, where error is pretty small
- My new model is $y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\epsilon_{i}$
- Possible least squares estimates that are nearly equivalent to my first model:
- $\hat{\beta}_{0}=1, \hat{\beta}_{1}=2, \hat{\beta}_{2}=0$
- $\hat{\beta}_{0}=1, \hat{\beta}_{1}=0, \hat{\beta}_{2}=2$
- $\hat{\beta}_{0}=1, \hat{\beta}_{1}=1002, \hat{\beta}_{2}=-1000$
- ...
- A unique solution exists, but it is hard to find

Effects of collinearity

- Collinearity results in a "flat" RSS
- Makes identifying a unique solution difficult
- Dramatically inflates the variance of LSEs

Collinearity example: lung data

$x_{1}+$ Error

dat\$crowd2 <- dat\$crowding + rnorm(nrow(dat), sd=.1)
mlr5 <- lm(disease ~ crowding, data=dat)
summary (mlr5) \$coef

mlr6 <- lm(disease ~ crowding + crowd2, data=dat)
summary (mlr6) \$coef

\#\#	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
\#\# (Intercept)	13.019617	3.490168	3.7303699	0.0003236495
\#\# crowding	-1.510590	6.883739	-0.2194432	0.8267707628
\#\# crowd2	3.017039	6.876945	0.4387180	0.6618516741

Some take away messages

- Collinearity can (and does) happen, so be careful
- Often contributes to the problem of variable selection, which we'll touch on later

Non-linear relationships: polynomial regression

Many relationships between X and Y are non-linear. A simple (not necessarily the best) way to account for this is using polynomial forms of X.

- Model of the form

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\ldots+\beta_{p} x_{i}^{p}+\epsilon_{i} ; \epsilon_{i} \stackrel{i i d}{\sim}\left(0, \sigma^{2}\right)
$$

- p is the polynomial order
- More polynomial terms can lead to a better approximation of $E(y \mid x)$, but also higher variability in the fit
- Conversely, smaller p can lead to inability to capture $E(y \mid x)$, but is often more stable
- Quadratic and cubic fits are relatively common

Non-linear relationships

Some tips on non-linear relationships

- You can go as high as $p=n$, but don't do it! "Overfitting" data is common practice (unfortunately).
- Coefficients become harder to interpret - you can't increase x_{2} without changing every other x_{p}
- Better (maybe) to think of the model as an estimated curve, whose interpretation is related to the derivative
- The literal formulation above is numerically unstable. Better to use orthogonal polynomials (R's poly function)

Non-linear relationships

Non-linear relationships

Non-linear relationships

Non-linear relationships OVerfit

Non-linear relationships

(p <- ggplot(dat, aes(x=education, y=disease)) + geom_point() + geom_smooth(method="lm", se=FALSE))

Non-linear relationships

```
mlr3 <- lm(disease ~ poly(education, 2), data=dat)
coef(mlr3)
##
##
    (Intercept) poly(education, 2)1 poly(education, 2)2
    49.91919 43.95171 -18.46921
(p <- p + geom_line(aes(y=predict(mlr3)), color="red") )
```


Non-linear relationships

```
mlr4 <- lm(disease ~ poly(education, 5), data=dat)
coef(mlr4)
```

\#\#	(Intercept) poly(education, 5) 1	poly (education, 5)2	
\#\#	49.919192	43.951707	-18.469208
\#\# poly(education, 5)3	poly(education, 5)4 4	poly(education, 5)5	
\#\#	-4.131932	-4.651902	7.896361

(p <- p + geom_line(aes(y=predict(mlr4)), color="green"))

Smoothing and splines

Turns out there's a lot of work on estimating smooth $E(y \mid x)=f(x)$

- Rather than polynomials, use smooth spline basis functions with nice properties (stable, smooth, flexible, smooth derivatives)
- These are piecewise polynomials
- How many to use governs how smooth or wiggly the final fit is
- Can introduce explicit penalties for smoothness, which gets you into semi-parametric regression ...

Today's big ideas

- least squares geometry, "hat matrix"
- dangers of collinearity and non-identifiability
- polynomial regression to model non-linear relationships

Lab

Analyze the NHANES dataset. Create a model with the outcome variable of cholesterol (chol) that estimates relationships with other variables in the dataset.
library (NHANES)
data (NHANES)
?NHANES

