Introduction to Multiple Linear Regression

Author: Nicholas G Reich, Jeff Goldsmith

This material is part of the statsTeachR project
Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

Today's lecture

Multiple Linear Regression: basic concepts

- Motivation
- Assumptions
- Interpretation of $\beta \mathbf{s}$
- More on confounding (omitted variable bias)
- Matrix notation for MLR

Relevant reading: Faraway Chapter 2, ISL Chapter 3.2-3.3

Motivation

Most applications involve more that one covariate - if more than one thing can influence an outcome, you need multiple linear regression.

- Improved description of $y \mid \mathbf{x}$
- More accurate estimates and predictions
- Allow testing of multiple effects
- Includes multiple predictor types

Why not bin all predictors?

- Divide x_{i} into k_{i} bins
- Stratify data based on inclusion in bins across x 's
- Find mean of the y_{i} in each category
- Possibly a reasonable non-parametric model

Why not bin all predictors?

Why not bin all predictors?

- More predictors = more bins
- If each x has 5 bins, you have 5^{p} overall categories
- May not have enough data to estimate distribution in each category
- Curse of dimensionality is a problem in a lot of non-parametric statistics

For more, see this interactive Shiny app.

Multiple linear regression model

- Observe data $\left(y_{i}, x_{i 1}, \ldots, x_{i p}\right)$ for subjects $1, \ldots, n$. Want to estimate $\beta_{0}, \beta_{1}, \ldots, \beta_{p}$ in the model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\ldots+\beta_{1} x_{i p}+\epsilon_{i} ; \epsilon_{i} \stackrel{i i d}{\sim}\left(0, \sigma^{2}\right)
$$

- Assumptions (residuals have mean zero, constant variance, are independent) are as in SLR
- Impose linearity which (as in the SLR) is a big assumption
- Our primary interest will be $E(y \mid \mathbf{x})$
- Eventually estimate model parameters using least squares

Predictor types

- Continuous
- Categorical
- Ordinal

Interpretation of coefficients

$$
\beta_{0}=E\left(y \mid x_{1}=0, \ldots, x=0\right)
$$

- Centering some of the x 's may make this more interpretable

Interpretation of β_{1}

Example with two predictors

Suppose we want to regress weight on height and sex.

- Model is $y_{i}=\beta_{0}+\beta_{1} x_{i, a g e}+\beta_{2} x_{i, \text { sex }}+\epsilon_{i}$
- Age is continuous starting with age 0 ; sex is binary, coded so that $x_{i, \text { sex }}=0$ for men and $x_{i, \text { sex }}=1$ for women

Example with two predictors

Model: $y_{i}=\beta_{0}+\beta_{1} x_{i, a g e}+\beta_{2} x_{i, \text { sex }}+\epsilon_{i}$

$$
\beta_{1}=
$$

$\beta_{2}=$

Example with two predictors

Omitted variable bias

What happens if the true regression model is

$$
y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\beta_{2} x_{i, 2}+\epsilon_{i}
$$

but we ignore x_{2} and fit the simple linear regression

$$
y_{i}=\beta_{0}^{*}+\beta_{1}^{*} x_{i, 1}+\epsilon_{i}^{*}
$$

Does $\beta_{1}^{*}=\beta_{1}$?

Omitted variable bias

When should you be concerned?
If both of the following conditions are met, then $\beta_{1}^{*}=\beta_{1}$:

- The omitted variable is unrelated to the outcome
- The omitted variable is uncorrelated with the retained variable

Note: A Simpson's paradox can be explained by ommited variable bias.

Matrix notation

- Observe data $\left(y_{i}, x_{i 1}, \ldots, x_{i p}\right)$ for subjects $1, \ldots, n$. Want to estimate $\beta_{0}, \beta_{1}, \ldots, \beta_{p}$ in the model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\ldots+\beta_{1} x_{i p}+\epsilon_{i} ; \epsilon_{i} \stackrel{i i d}{\sim}\left(0, \sigma^{2}\right)
$$

- Notation is cumbersome. To fix this, let

■ $\mathbf{x}_{i}=\left[1, x_{i 1}, \ldots, x_{i p}\right]$

- $\boldsymbol{\beta}^{\boldsymbol{T}}=\left[\beta_{0}, \beta_{1}, \ldots, \boldsymbol{\beta}_{p}\right]$

■ Then $y_{i}=\mathbf{x}_{i} \boldsymbol{\beta}+\epsilon_{i}$

Multiple linear regressoion

- Let

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right], \quad \mathbf{X}=\left[\begin{array}{cccc}
1 & x_{11} & \ldots & x_{1 p} \\
\vdots & \vdots & x_{i j} & \vdots \\
1 & x_{n 1} & \cdots & x_{n p}
\end{array}\right], \quad \boldsymbol{\beta}=\left[\begin{array}{c}
\beta_{0} \\
\vdots \\
\beta_{p}
\end{array}\right], \quad \boldsymbol{\epsilon}=\left[\begin{array}{c}
\epsilon_{1} \\
\vdots \\
\epsilon_{n}
\end{array}\right]
$$

- Then we can write the model in a more compact form:

$$
\mathbf{y}_{n \times 1}=\mathbf{X}_{n \times(p+1)} \boldsymbol{\beta}_{(p+1) \times 1}+\boldsymbol{\epsilon}_{n \times 1}
$$

- \mathbf{X} is called the design matrix

Matrix notation

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

- ϵ is a random vector rather than a random variable
- $E(\epsilon)=0$ and $\operatorname{Cov}(\epsilon)=\sigma^{2}$ I
- Note that Cov means the "variance-covariance matrix"

Mean, variance and covariance of a random vector

- Let $\mathbf{y}^{T}=\left[y_{1}, \ldots, y_{n}\right]$ be an n-component random vector. Then its mean and variance are defined as

$$
\begin{aligned}
E(\mathbf{y})^{T} & =\left[E\left(y_{1}\right), \ldots, E\left(y_{n}\right)\right] \\
\operatorname{Var}(\mathbf{y}) & =E\left[(\mathbf{y}-E \mathbf{y})(\mathbf{y}-E \mathbf{y})^{T}\right]=E\left(\mathbf{y} \mathbf{y}^{T}\right)-(E \mathbf{y})(E \mathbf{y})^{T}
\end{aligned}
$$

- Let \mathbf{y} and \mathbf{z} be an n-component and an m-component random vector respectively. Then their covariance is an $n \times m$ matrix defined by

$$
\operatorname{Cov}(\mathbf{y}, \mathbf{z})=E\left[(\mathbf{y}-E \mathbf{y})(\mathbf{z}-\mathbf{z})^{T}\right]
$$

Coming up next...

Today we covered

- Motivation
- Assumptions
- Interpretation of $\beta \mathbf{s}$
- More on confounding (omitted variable bias)
- Matrix notation for MLR

Next time...

- estimation (more least squares)
- more detailed model diagnostics
- inference

