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Today’s lecture

Multiple Linear Regression: basic concepts

! Motivation

! Assumptions

! Interpretation of βs

! More on confounding (omitted variable bias)

! Matrix notation for MLR

Relevant reading: Faraway Chapter 2, ISL Chapter 3.2-3.3



Motivation

Most applications involve more that one covariate – if more than
one thing can influence an outcome, you need multiple linear
regression.

! Improved description of y |x
! More accurate estimates and predictions

! Allow testing of multiple effects

! Includes multiple predictor types



Why not bin all predictors?

! Divide xi into ki bins

! Stratify data based on inclusion in bins across x ’s

! Find mean of the yi in each category

! Possibly a reasonable non-parametric model



Why not bin all predictors?
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Why not bin all predictors?

! More predictors = more bins

! If each x has 5 bins, you have 5p overall categories

! May not have enough data to estimate distribution in each
category

! Curse of dimensionality is a problem in a lot of non-parametric
statistics

For more, see this interactive Shiny app.



Multiple linear regression model

! Observe data (yi , xi1, . . . , xip) for subjects 1, . . . , n. Want to
estimate β0,β1, . . . ,βp in the model

yi = β0 + β1xi1 + . . .+ β1xip + εi ; εi
iid∼ (0,σ2)

! Assumptions (residuals have mean zero, constant variance, are
independent) are as in SLR

! Impose linearity which (as in the SLR) is a big assumption

! Our primary interest will be E (y |x)
! Eventually estimate model parameters using least squares



Predictor types

! Continuous

! Categorical

! Ordinal



Interpretation of coefficients

β0 = E (y |x1 = 0, . . . , x = 0)

! Centering some of the x ’s may make this more interpretable



Interpretation of β1



Example with two predictors

Suppose we want to regress weight on height and sex.

! Model is yi = β0 + β1xi ,age + β2xi ,sex + εi

! Age is continuous starting with age 0; sex is binary, coded so
that xi ,sex = 0 for men and xi ,sex = 1 for women



Example with two predictors

Model: yi = β0 + β1xi ,age + β2xi ,sex + εi

β1 =

β2 =



Example with two predictors
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Omitted variable bias

What happens if the true regression model is

yi = β0 + β1xi ,1 + β2xi ,2 + εi

but we ignore x2 and fit the simple linear regression

yi = β∗
0 + β∗

1xi ,1 + ε∗i

Does β∗
1 = β1?



Omitted variable bias

When should you be concerned?

If both of the following conditions are met, then β∗
1 = β1:

! The omitted variable is unrelated to the outcome

! The omitted variable is uncorrelated with the retained variable

Note: A Simpson’s paradox can be explained by ommited variable
bias.



Matrix notation

! Observe data (yi , xi1, . . . , xip) for subjects 1, . . . , n. Want to
estimate β0,β1, . . . ,βp in the model

yi = β0 + β1xi1 + . . .+ β1xip + εi ; εi
iid∼ (0,σ2)

! Notation is cumbersome. To fix this, let

! xi = [1, xi1, . . . , xip]

! βT = [β0,β1, . . . ,βp]
! Then yi = xiβ + εi



Multiple linear regressoion

! Let
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! Then we can write the model in a more compact form:

yn×1 = Xn×(p+1)β(p+1)×1 + εn×1

! X is called the design matrix



Matrix notation

y = Xβ + ε

! ε is a random vector rather than a random variable

! E (ε) = 0 and Cov(ε) = σ2I

! Note that Cov means the “variance-covariance matrix”



Mean, variance and covariance of a random vector

! Let yT = [y1, . . . , yn] be an n-component random vector.
Then its mean and variance are defined as

E (y)T = [E (y1), . . . ,E (yn)]

Var(y) = E
[
(y − Ey)(y − Ey)T

]
= E (yyT )− (Ey)(Ey)T

! Let y and z be an n-component and an m-component random
vector respectively. Then their covariance is an n ×m matrix
defined by

Cov(y, z) = E
[
(y − Ey)(z− z)T

]



Coming up next...

Today we covered

! Motivation

! Assumptions

! Interpretation of βs

! More on confounding (omitted variable bias)

! Matrix notation for MLR

Next time...

! estimation (more least squares)

! more detailed model diagnostics

! inference


