Simple Linear Regression and the Method of Least Squares

Author: Nicholas G Reich, Jeff Goldsmith

This material is part of the statsTeachR project
Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

Figure acknowledgements to Hadley Wickham.

Which data show a stronger association?

Goals for this class

You should be able to...

- interpret regression coefficients.
- derive estimators for SLR coefficients.
- implement a SLR from scratch (i.e. not using $\operatorname{lm}()$).
- explain why some points have more influence than others on the fitted line.

Regression modeling

- Want to use predictors to learn about the outcome distribution, particularly conditional expected value.
- Formulate the problem parametrically

$$
E(y \mid x)=f(x ; \beta)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots
$$

- (Note that other useful quantities, like covariance and correlation, tell you about the joint distribution of y and x)

Brief Detour: Covariance and Correlation

$$
\begin{aligned}
\operatorname{cov}(x, y) & =\mathbb{E}\left[\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)\right] \\
\operatorname{cor}(x, y) & =\frac{\operatorname{cov}(x, y)}{\sqrt{\operatorname{var}(x) \operatorname{var}(y)}} \rightarrow \operatorname{un}_{n} \text { ties } \\
\operatorname{cov}(x, y) & =E\left[x \cdot y-x \cdot \mu_{y}-y \cdot \mu_{x}+\mu_{x} \mu_{y}\right] \\
& =E[x y]-\frac{E[x] \mu_{y}}{\mu_{x} \cdot \mu_{y}} \cdot \frac{E[z] \mu_{x}}{+\mu_{x} \mu_{y}} \\
& =E[x y]-\mu_{x} \cdot \mu_{y} \\
& =\sum_{i=1}^{N} \frac{x_{i} y_{i}}{N}-\bar{x} \cdot \bar{y}
\end{aligned}
$$

Simple linear regression

- Linear models are a special case of all regression models; simple linear regression is the simplest place to start
- Only one predictor:

$$
E(y \mid x)=f(x ; \beta)=\beta_{0}+\beta_{1} x_{1}
$$

- Useful to note that $x_{0}=1$ (implicit definition)

SLR

- Somehow, estimate β_{0}, β_{1} using observed data.

$$
\begin{gathered}
E(y \mid x)=\beta_{0} \cdot x_{0}+\beta_{1} x_{1} \\
x_{0}=1
\end{gathered}
$$

Coefficient interpretation

$$
\begin{aligned}
& E[y \mid x]=\beta_{0}+\beta_{1} \cdot x \\
& E[y \mid x=k]=\beta_{0}+\beta_{i} \cdot k \\
& E[y \mid x=k-1]=\beta_{0}+\beta_{1}(k-1) \\
& =\beta_{0}+\beta_{1}-k-\beta_{1} \\
& E(y \mid x=k)-E(y \mid x=k-1)=\beta_{1}
\end{aligned}
$$

$\beta_{1}=$ expected change in y for a one unit increase in x $\beta_{0}=$ expected value of y when $x=0$

Coefficient interpretation

Step 1: Always look at the data!

- Plot the data using, e.g. the plot() or qplot() functions
- Do the data look like the assumed model?
- Should you be concerned about outliers?
- Define what you expect to see before fitting any model.

Least squares estimation

- Observe data $\left(y_{i}, x_{i}\right)$ for subjects $1, \ldots, I$. Want to estimate β_{0}, β_{1} in the model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i} ; \epsilon_{i} \stackrel{\text { iid }}{\sim}\left(0, \sigma^{2}\right)
$$

- Recall the assumptions:
- A1: The model: e.g. $y_{i}=f\left(x_{i} ; \beta\right)+\epsilon_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\epsilon_{i}$
- A2: Unbiased errors: $\mathbb{E}\left[\epsilon_{i} \mid x_{i}\right]=\mathbb{E}\left[\epsilon_{i}\right]=0$
- A3: Uncorrelated errors: $\operatorname{cov}\left(\epsilon_{i}, \epsilon_{j}\right)=0$ for $i \neq j$.
- A4: Constant variance: $\operatorname{Var}\left[y_{i} \mid x_{i}\right]=\sigma^{2}$
- A5: Probability distribution: e.g. $\epsilon_{i} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$ [not needed for LS, is needed for inference].
- A6: Representative sampling: generalize to population.

Circle of Life

Least squares estimation

- Recall that for a single sample $y_{i}, i \in 1, \ldots, N$, the sample mean $\hat{\mu}_{y}$ minimizes the sum of squared deviations.

$$
\begin{aligned}
& \operatorname{RSS}\left(\mu_{y}\right)=\sum_{i=1}^{N}\left(y_{i}-\mu_{y}\right)^{2} \\
& \frac{\partial R S S\left(\mu_{g}\right)^{2}}{\partial \mu_{y}}=\frac{\partial}{\partial \mu_{y}}\left[\sum_{1}^{N}\left(y_{i}-\mu_{y}\right)^{2}\right] \\
& =\sum_{i=1}^{N} 2 \cdot\left(y_{i}-\mu_{j}\right) \cdot-1 \equiv 0 \\
& \sum_{i=1}^{N} y_{i}-N \mu_{y}=0 \\
& \frac{\sum_{y} y_{i}}{N}=\mu_{y} \Rightarrow \hat{\mu}_{y}=\bar{Y} \\
& \text { minimize RSS }
\end{aligned}
$$

Least squares estimation

Find $\hat{\beta}_{0}$ and β_{1}. By minimizing RSS relative to each parameter.

$$
\begin{aligned}
\operatorname{RSS}\left(\beta_{0}, \beta_{1}\right) & =\sum_{i=1}^{N}\left(y_{i}-\mathbb{E}\left[y_{i} \mid x_{i}\right]\right)^{2} \\
& =\sum^{2}\left(y_{i}-\left[\beta_{\Delta}+\beta_{1} x_{1} ; \cdots\right]\right)^{2}
\end{aligned}
$$

We obtain

$$
\begin{aligned}
& \hat{\beta}_{0}=b_{0}=\bar{y}-b_{1} \bar{x} \\
& \hat{\beta}_{1}=b_{1}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}
\end{aligned}
$$

Notes about LSE

Relationship between correlation and slope

$$
\begin{aligned}
\rho & =\frac{\operatorname{cov}(x, y)}{\sqrt{\operatorname{var}(x) \operatorname{var}(y)}} ; \quad \beta_{1}=\frac{\operatorname{cov}(x, y)}{\operatorname{var}(x)} \\
& =\frac{\operatorname{rov}(x, y)}{\operatorname{sd}(x) \operatorname{sd}(y)} \cdot \frac{\operatorname{sd}(y)}{\operatorname{sl}(x)}
\end{aligned}
$$

Why we need to keep watch for outliers

$$
\begin{aligned}
& \text { rep watch for outliers } \\
& \begin{aligned}
\hat{\beta}_{1} & =\frac{\sum\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}} \cdot \frac{\left(x_{i}-\bar{x}\right)}{\left(x_{i}-\bar{x}\right)} \\
& =\frac{\sum \frac{y_{i}-\bar{y}}{x_{i}-\bar{x}}\left(x_{i}-\bar{x}\right)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}=w_{i} \\
& =\sum \frac{y_{i}-\bar{y}}{x_{i}-\bar{x}} \omega_{i}
\end{aligned}
\end{aligned}
$$

Note that weight ω_{i} increases as x_{i} gets further away from \bar{x}.

$$
\left(x_{i}-\bar{x}\right)=0, w_{i}=0
$$

Geometric interpretation of least squares

Least squares minimizes the sum of squared vertical distances between observed and estimated y 's:

$$
\beta_{0}^{\min }, \beta_{1} \sum_{i=1}^{I}\left(y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right)^{2}
$$

Least squares foreshadowing

- Didn't have to choose to minimize squares - could minimize absolute value, for instance.
- Least squares estimates turn out to be a "good idea" unbiased, BLUE (Best Linear Unbiased Estimator).
- Later we'll see about maximum likelihood as well.

Lab exercise: computing $\hat{\beta}$ on your own

- Load the heights data from lecture 1 .
- Run a linear model using the R function $\operatorname{lm}()$, with daughter height as the outcome.
- Compare the results of that regression with hand-calculated $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ coefficients.

```
# sample code
install.packages("alr3")
library(alr3)
data(heights)
fm1 <- lm(Dheight ~ Mheight, data=heights)
summary(fm1)
```

