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Today’s Lecture

� Spline models

� Penalized spline regression

More info:

� Harrel, Regression Modeling Strategies, Chapter 2, PDF
handout

� ISL Chapter 7



Piecewise linear models

A piecewise linear model (also called a change point model or
broken stick model) contains a few linear components

� Outcome is linear over full domain, but with a different slope
at different points

� Points where relationship changes are referred to as “change
points” or “knots”

� Often there’s one (or a few) potential change points



Piecewise linear models

Suppose we want to estimate E(y |x) = f (x) using a piecewise
linear model.

� For one knot we can write this as

E(y |x) = β0 + β1x + β2(x − κ)+

where κ is the location of the change point and

(x − κ)+ =



Interpretation of regression coefficients

E(y |x) = β0 + β1x + β2(x − κ)+

� β0 = E[y |x = 0] (assuming κ < 0)

� β1 =

Expected change in y for a 1-unit increase in x , when
x < κ

� β2 =

Change in slope between x < κ and x > κ

� β1 + β2 =

Expected change in y for a 1-unit increase in x ,
when x ≥ κ
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Estimation

� Piecewise linear models are low-dimensional (no need for
penalization)

� Parameters are estimated via OLS

� The design matrix is ...



Multiple knots

Suppose we want to estimate E(y |x) = f (x) using a piecewise
linear model.

� For multiple knots we can write this as

E(y |x) = β0 + β1x +
K∑

k=1

βk+1(x − κk)+

where {κk}Kk=1 are the locations of the change points

� Note that knot locations are defined before estimating
regression coefficients

� Also, regression coefficients are interpreted conditional on the
knots.



Example: lidar data

library(MASS)

library(SemiPar)

## Warning: package ’SemiPar’ was built under R version 3.1.2

data(lidar)

y = lidar$logratio

range = lidar$range

qplot(range, y)
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Example: lidar data

knots <- c(550, 625)

mkSpline <- function(k, x) (x - k > 0) * (x - k)

X.des = cbind(1, range, sapply(knots, FUN=mkSpline, x=range))

colnames(X.des) <- c("intercept", "range", "range1", "range2")

lm.lin = lm(y ~ X.des - 1)

plot(range, y, xlab = "Range", ylab = "log ratio", pch = 18)

points(range, lm.lin$fitted.values, type = 'l', col = "red", lwd = 2)
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Example: lidar data

summary(lm.lin)$coef

## Estimate Std. Error t value Pr(>|t|)

## X.desintercept -1.444288e-02 0.0687353855 -0.2101230 8.337689e-01

## X.desrange -8.407376e-05 0.0001426647 -0.5893102 5.562663e-01

## X.desrange1 -7.042794e-03 0.0003834218 -18.3682689 4.379404e-46

## X.desrange2 5.723186e-03 0.0005153479 11.1054811 5.554824e-23



Piecewise quadratic and cubic models

Suppose we want to estimate E(y |x) = f (x) using a piecewise
quadratic model.

� For multiple knots we can write this as

E(y |x) = β0 + β1x + β1x
2 +

K∑
k=1

βk+2(x − κk)2+

where {κk}Kk=1 are the locations of the change points

� Similar extension for cubics

� Piecewise quadratic models are smooth and have continuous
first derivatives



Pros and cons of piecewise models

Piecewise (linear, quadratic, etc) models have several advantages

� Easy construction of basis functions

� Flexible, and don’t rely on determining an appropriate form
for f (x) using standard functions

� Allow for significance testing on change point slopes

� Fairly direct interpretations

Disadvantages

� knot specification is often arbitrary



B-splines and natural splines

Characteristics

� Both B-splines and natural splines similarly define a basis over
the domain of x

� Can be constrained to have seasonal patterns

� They are made up of piecewise polynomials of a given degree,
and have defined derivatives similarly to the piecewise defined
functions

� Big advantage over linear splines: parameter estimation is
often fairly robust to your choice of knots

� Big disadvantage over linear splines: harder to interpret
specific coefficients



B-splines basis functions

E(y |x) = β0 +
6∑

j=1

βjBj(x)
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Example: lidar data

require(splines)

lm.bs3 = lm(y ~ bs(range, df=3))

plot(range, y, xlab = "Range", ylab = "log ratio", pch = 18)

points(range, lm.bs3$fitted.values, type = 'l', col = "red", lwd = 2)
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Example: lidar data

lm.bs5 = lm(y ~ bs(range, df=5))

plot(range, y, xlab = "Range", ylab = "log ratio", pch = 18)

points(range, lm.bs5$fitted.values, type = 'l', col = "red", lwd = 2)
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Example: lidar data

lm.bs5 = lm(y ~ bs(range, df=10))

plot(range, y, xlab = "Range", ylab = "log ratio", pch = 18)

points(range, lm.bs5$fitted.values, type = 'l', col = "red", lwd = 2)
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Take-home points for spline approaches (1)

Spines can flexibly model non-linear relationships

� Can improve model fit because of relaxed linearity
assumptions.

� Caveat: spline models require careful graphical interpretation,
slopes may not be easily available/interpretable



Take-home points for spline approaches (2)

Do you want control over your knots?

� Your application may have explicit “change-points” (i.e.
interrupted time-series)

� In most cases, you do not want your spline model to be
sensitive to user input (i.e. knot placement)

� “Penalized splines” can reduce this sensitivity at the cost of
more complex model and estimation (More in ISL Chapter 7,
Biostat Methods 3, anything about Generalized Additive
Models (e.g. mgcv package and gam() function), one of
your projects?).


