# Using splines in regression

#### Author: Nicholas G Reich, Jeff Goldsmith

#### This material is part of the statsTeachR project

Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en\_US

## Today's Lecture

- Spline models
- Penalized spline regression

More info:

- Harrel, Regression Modeling Strategies, Chapter 2, PDF handout
- ISL Chapter 7

### Piecewise linear models

A piecewise linear model (also called a change point model or broken stick model) contains a few linear components

- Outcome is linear over full domain, but with a different slope at different points
- Points where relationship changes are referred to as "change points" or "knots"
- Often there's one (or a few) potential change points

### Piecewise linear models

Suppose we want to estimate E(y|x) = f(x) using a piecewise linear model.

For one knot we can write this as

$$\mathsf{E}(y|x) = \beta_0 + \beta_1 x + \beta_2 (x - \kappa)_+$$

where  $\kappa$  is the location of the change point and

$$(x - \kappa)_+ =$$

$$\mathsf{E}(y|x) = \beta_0 + \beta_1 x + \beta_2 (x - \kappa)_+$$

• 
$$\beta_0 = \mathbb{E}[y|x=0]$$
 (assuming  $\kappa < 0$ )

•  $\beta_1 + \beta_2 =$ 

$$\mathsf{E}(y|x) = \beta_0 + \beta_1 x + \beta_2 (x - \kappa)_+$$

• 
$$\beta_0 = \mathbb{E}[y|x=0]$$
 (assuming  $\kappa < 0$ )

•  $\beta_1 = \text{Expected change in } y \text{ for a 1-unit increase in } x$ , when  $x < \kappa$ 

$$\beta_1 + \beta_2 =$$

$$\mathsf{E}(y|x) = \beta_0 + \beta_1 x + \beta_2 (x - \kappa)_+$$

• 
$$\beta_0 = \mathbb{E}[y|x=0]$$
 (assuming  $\kappa < 0$ )

- $\beta_1 = \text{Expected change in } y \text{ for a 1-unit increase in } x$ , when  $x < \kappa$
- $\beta_2$  = Change in slope between  $x < \kappa$  and  $x > \kappa$

$$\bullet \ \beta_1 + \beta_2 =$$

$$\mathsf{E}(y|x) = \beta_0 + \beta_1 x + \beta_2 (x - \kappa)_+$$

• 
$$\beta_0 = \mathbb{E}[y|x=0]$$
 (assuming  $\kappa < 0$ )

- β<sub>1</sub> = Expected change in y for a 1-unit increase in x, when x < κ</li>
- $\beta_2$  = Change in slope between  $x < \kappa$  and  $x > \kappa$
- $\beta_1 + \beta_2 =$  Expected change in y for a 1-unit increase in x, when  $x \ge \kappa$

## Estimation

- Piecewise linear models are low-dimensional (no need for penalization)
- Parameters are estimated via OLS
- The design matrix is ...

### Multiple knots

Suppose we want to estimate E(y|x) = f(x) using a piecewise linear model.

For multiple knots we can write this as

$$\mathsf{E}(y|x) = \beta_0 + \beta_1 x + \sum_{k=1}^{K} \beta_{k+1} (x - \kappa_k)_+$$

where  $\{\kappa_k\}_{k=1}^{K}$  are the locations of the change points

- Note that knot locations are defined before estimating regression coefficients
- Also, regression coefficients are interpreted conditional on the knots.

```
library(MASS)
library(SemiPar)
## Warning: package 'SemiPar' was built under R version 3.1.2
data(lidar)
y = lidar$logratio
range = lidar$range
qplot(range, y)
```



```
knots <- c(550, 625)
mkSpline <- function(k, x) (x - k > 0) * (x - k)
X.des = cbind(1, range, sapply(knots, FUN=mkSpline, x=range))
colnames(X.des) <- c("intercept", "range", "range1", "range2")
lm.lin = lm(y ~ X.des - 1)
plot(range, y, xlab = "Range", ylab = "log ratio", pch = 18)
points(range, lm.lin$fitted.values, type = 'l', col = "red", lwd = 2)</pre>
```



```
summary(lm.lin)$coef
```

| ## |                | Estimate      | Std. Error   | t value     | Pr(> t )     |
|----|----------------|---------------|--------------|-------------|--------------|
| ## | X.desintercept | -1.444288e-02 | 0.0687353855 | -0.2101230  | 8.337689e-01 |
| ## | X.desrange     | -8.407376e-05 | 0.0001426647 | -0.5893102  | 5.562663e-01 |
| ## | X.desrange1    | -7.042794e-03 | 0.0003834218 | -18.3682689 | 4.379404e-46 |
| ## | X.desrange2    | 5.723186e-03  | 0.0005153479 | 11.1054811  | 5.554824e-23 |

### Piecewise quadratic and cubic models

Suppose we want to estimate E(y|x) = f(x) using a piecewise quadratic model.

For multiple knots we can write this as

$$\mathsf{E}(y|x) = \beta_0 + \beta_1 x + \beta_1 x^2 + \sum_{k=1}^{K} \beta_{k+2} (x - \kappa_k)_+^2$$

where  $\{\kappa_k\}_{k=1}^{K}$  are the locations of the change points

- Similar extension for cubics
- Piecewise quadratic models are smooth and have continuous first derivatives

### Pros and cons of piecewise models

Piecewise (linear, quadratic, etc) models have several advantages

- Easy construction of basis functions
- Flexible, and don't rely on determining an appropriate form for f(x) using standard functions
- Allow for significance testing on change point slopes
- Fairly direct interpretations

Disadvantages

knot specification is often arbitrary

## B-splines and natural splines

#### Characteristics

- Both B-splines and natural splines similarly define a basis over the domain of x
- Can be constrained to have seasonal patterns
- They are made up of piecewise polynomials of a given degree, and have defined derivatives similarly to the piecewise defined functions
- Big advantage over linear splines: parameter estimation is often fairly robust to your choice of knots
- Big disadvantage over linear splines: harder to interpret specific coefficients

### B-splines basis functions

$$\mathsf{E}(y|x) = \beta_0 + \sum_{j=1}^{\mathsf{o}} \beta_j B_j(x)$$



```
require(splines)
lm.bs3 = lm(y ~ bs(range, df=3))
plot(range, y, xlab = "Range", ylab = "log ratio", pch = 18)
points(range, lm.bs3$fitted.values, type = 'l', col = "red", lwd = 2)
```



lm.bs5 = lm(y ~ bs(range, df=5))
plot(range, y, xlab = "Range", ylab = "log ratio", pch = 18)
points(range, lm.bs5\$fitted.values, type = 'l', col = "red", lwd = 2)



lm.bs5 = lm(y ~ bs(range, df=10))
plot(range, y, xlab = "Range", ylab = "log ratio", pch = 18)
points(range, lm.bs5\$fitted.values, type = 'l', col = "red", lwd = 2)



### Take-home points for spline approaches (1)

Spines can flexibly model non-linear relationships

- Can improve model fit because of relaxed linearity assumptions.
- Caveat: spline models require careful graphical interpretation, slopes may not be easily available/interpretable



.....



Take-home points for spline approaches (2)

Do you want control over your knots?

- Your application may have explicit "change-points" (i.e. interrupted time-series)
- In most cases, you do not want your spline model to be sensitive to user input (i.e. knot placement)
- "Penalized splines" can reduce this sensitivity at the cost of more complex model and estimation (More in *ISL* Chapter 7, Biostat Methods 3, anything about Generalized Additive Models (e.g. mgcv package and gam() function), one of your projects?).