MLR: miscellaneous practical tools

Author: Nicholas G Reich, Jeff Goldsmith

This material is part of the statsTeach \mathbf{R} project
Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

Today's Lecture

A few miscellaneous but important building blocks for regression

- Advanced residual plots
- Interaction models
- Transformations of predictors

Typical regression plot: fitted line

```
qplot(crowding, disease, geom=c("point", "smooth"),
    method="lm", data=data)
```


Typical residual plot: fitted vs. residuals

```
slr1 <- lm(disease ~ crowding, data=data)
plot(slr1, which=1)
```

Residuals vs Fitted

But this is more complicated with MLR: how do we visualize adjusted multivariable relationships?

Predictor vs. residual plots

```
library(car)
mlr1 <- lm(disease ~ crowding + education + airqual, data=data)
residualPlots(mlr1, tests=FALSE)
```


Checking model structure: adjusted variable plots!

- You can plot residuals against each of the predictors, or plot outcomes against predictors, BUT...
- Keep in mind the MLR uses adjusted relationships; scatterplots don't show that adjustment!

Adjusted variable plots (partial regression plots, added variable plots) can be useful.

Adjusted (or added) variable plots

- Regress y on everything but x_{j}; take residuals $r_{y \mid-x_{j}}$
- Regress x_{j} on everything but x_{j}; take residuals $r_{x_{j} \mid-x_{j}}$
- Regress $r_{y \mid-x_{j}}$ on $r_{x_{j} \mid-x_{j}}$; slope of this line will match β_{j} in the full MLR
- Plot of $r_{y \mid-x_{j}}$ against $r_{x_{j} \mid-x_{j}}$ shows the "adjusted" relationship
- This figure can be used to diagnose violations of linearity in MLR models.

AV plots

```
library(visreg)
avPlot(mlr1, variable="airqual")
```

Added-Variable Plot: airqual

What is interaction?

Definition of interaction
Interaction occurs when the relationship between two variables depends on the value of a third variable.

Some real world examples?

How to include interaction in a MLR

Model A: $y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\epsilon_{i}$
Model B: $y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 1} \cdot x_{i 2}+\epsilon_{i}$

Key points

- "easily" conceptualized with 1 continuous, 1 categorical variable
- models possible with other variable combinations, but interpretation/visualization harder
- two variable interactions are considered "first-order" interactions (often used to define a class of models)
- still a linear model, but no longer a strictly additive model

How to interpret an interaction model

For now, assume x_{1} is continuous, x_{2} is $0 / 1$ binary.
Model A: $y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\epsilon_{i}$
Model B: $y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 1} \cdot x_{i 2}+\epsilon_{i}$

How to interpret an interaction model

For now, assume x_{1} is continuous, x_{2} is $0 / 1$ binary.
Model A: $y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\epsilon_{i}$
Model B: $y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 1} \cdot x_{i 2}+\epsilon_{i}$
β_{3} is the change in the slope of the line that describes the relationship of $y \sim x_{1}$ comparing the groups defined by $x_{2}=0$ and $x_{2}=1$.
$\beta_{1}+\beta_{3}$ is the expected change in y for a one-unit increase in x_{1} in the group $x_{2}=1$.
$\beta_{0}+\beta_{2}$ is the expected value of y in the group $x_{2}=1$ when
$x_{1}=0$.

Example interaction model with FEV data

$$
\mathrm{fev}_{i}=\beta_{0}+\beta_{1} \text { age }_{i}+\beta_{2} h t_{i}+\beta_{3} \text { sex }_{i 2}+\beta_{4} \text { smoke }_{i}+\beta_{5} h t \cdot \text { smoke }_{i}+\epsilon_{i}
$$

```
mi1 <- lm(fev ~ age + height + smoke + sex, data=FEV)
mi2 <- lm(fev ~ age + height*smoke + sex, data=FEV)
c(AIC(mi1), AIC(mi2))
round(summary(mi2)$coef,2)
```

\#\# [1] 703.8700 .5

\#\#	Estimate Std. Error t	value $\operatorname{Pr}(>\|\mathrm{t}\|)$		
\#\# (Intercept)	-4.35	0.23	-19.12	0.00
\#\# age	0.07	0.01	7.17	0.00
\#\# height	0.10	0.00	21.08	0.00
\#\# smokecurrent smoker	-2.61	1.10	-2.37	0.02
\#\# sexmale	0.15	0.03	4.43	0.00
\#\# height: smokecurrent smoker	0.04	0.02	2.30	0.02

For current smokers, the relationship between height and FEV is stronger than in non-current smokers. In non-current smokers, we observe that a one-unit increase in height is associated with a 0.10 increase in expected FEV. In current smokers, this changes to a 0.14 increase in expected FEV.

Example interaction model with FEV data

```
qplot(height, fev, data=FEV, color=smoke,
    geom=c("point", "smooth"), method="lm")
```


Example interaction model with FEV data

The visreg package plots not the data but the partial residuals (a.k.a. the adjusted variable) plot.

```
visreg(mi2, "height", by="smoke")
```


Example interaction model with FEV data

```
visreg(mi2, "height", by="smoke", overlay=TRUE)
```

—— non-current smoker - current smoker

Overview of variable transformations

The problems

- Non-linearity between X and $Y \longrightarrow$ transform X
- Skewed distribution of X s/points with high leverage transform X
- Non-constant variance \longrightarrow transform Y

Transforming your X variables

Transforming predictor variables can help with constant-variance non-linear relationships.

Transforming your X variables

β interpretations with transformed $X \mathrm{~s}$

Transforming predictor variables can help with non-linearities, but can make coefficient interpretations hard.

Possible solutions
■ Interpret β s qualitatively across a region of interest: "We found strong evidence for a inverse association, where values of Y decreased inversely proportional to X across the observed range (a, b).

- Occasionally, a "one unit change in X " can be meaningful: e.g. $\log _{a} X$. A one unit change in $\log _{a} X$ indicates a a-fold increase in X.

β interpretations with transformed $X \mathrm{~s}$

Transforming predictor variables can help with non-linearities, but can make coefficient interpretations hard.

Transforming Y s for non-constant variance

What to do ...

- Nothing; just use least squares and bootstrap
- Use weighted LS, GLS (Methods 3?)
- Use a variance stabilizing transformation
- Consider a generalized linear model (more soon)

Box-Cox Transformations

Outcome is raised to the λ power:

$$
y_{i}^{\lambda}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\epsilon_{i}
$$

- Estimate λ, a new parameter, by maximum likelihood.
- Some well-known choices of $\lambda: 2,-1,1 / 2$
- By definition, when $\lambda=0$, we specify $y_{i}^{\lambda}=\log _{e} y_{i}$

Wrap-up

New instruments for your regression tool-kit

- Interactions and data transformations are common extensions/additions to regression models in practice.
- Both are simple to implement, challenging to interpret correctly!
- But, you may not always need a interpretation, e.g. you might just want a good prediction.

