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Today’s Lecture

A few miscellaneous but important building blocks for
regression

� Advanced residual plots

� Interaction models

� Transformations of predictors



Typical regression plot: fitted line

qplot(crowding, disease, geom=c("point", "smooth"),

method="lm", data=data)
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Typical residual plot: fitted vs. residuals

slr1 <- lm(disease ~ crowding, data=data)

plot(slr1, which=1)
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But this is more complicated with MLR: how do we visualize adjusted multivariable
relationships?



Predictor vs. residual plots

library(car)

mlr1 <- lm(disease ~ crowding + education + airqual, data=data)

residualPlots(mlr1, tests=FALSE)
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Checking model structure: adjusted variable plots!

� You can plot residuals against each of the predictors, or plot
outcomes against predictors, BUT...

� Keep in mind the MLR uses adjusted relationships;
scatterplots don’t show that adjustment!

Adjusted variable plots (partial regression plots, added variable
plots) can be useful.



Adjusted (or added) variable plots

� Regress y on everything but xj ; take residuals ry |−xj
� Regress xj on everything but xj ; take residuals rxj |−xj
� Regress ry |−xj on rxj |−xj ; slope of this line will match βj in the

full MLR

� Plot of ry |−xj against rxj |−xj shows the “adjusted” relationship

� This figure can be used to diagnose violations of linearity in
MLR models.



AV plots

library(visreg)

avPlot(mlr1, variable="airqual")
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What is interaction?

Definition of interaction
Interaction occurs when the relationship between two variables
depends on the value of a third variable.
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Some real world examples?



How to include interaction in a MLR

Model A: yi = β0 + β1xi1 + β2xi2 + εi
Model B: yi = β0 + β1xi1 + β2xi2 + β3xi1 · xi2 + εi

Key points

� “easily” conceptualized with 1 continuous, 1 categorical
variable

� models possible with other variable combinations, but
interpretation/visualization harder

� two variable interactions are considered “first-order”
interactions (often used to define a class of models)

� still a linear model, but no longer a strictly additive model



How to interpret an interaction model

For now, assume x1 is continuous, x2 is 0/1 binary.
Model A: yi = β0 + β1xi1 + β2xi2 + εi
Model B: yi = β0 + β1xi1 + β2xi2 + β3xi1 · xi2 + εi



How to interpret an interaction model

For now, assume x1 is continuous, x2 is 0/1 binary.
Model A: yi = β0 + β1xi1 + β2xi2 + εi
Model B: yi = β0 + β1xi1 + β2xi2 + β3xi1 · xi2 + εi

β3 is the change in the slope of the line that describes the
relationship of y ∼ x1 comparing the groups defined by x2 = 0 and
x2 = 1.
β1 + β3 is the expected change in y for a one-unit increase in x1 in
the group x2 = 1.
β0 + β2 is the expected value of y in the group x2 = 1 when
x1 = 0 .



Example interaction model with FEV data

fevi = β0 +β1agei +β2hti +β3sexi2 +β4smokei +β5ht · smokei + εi

mi1 <- lm(fev ~ age + height + smoke + sex, data=FEV)

mi2 <- lm(fev ~ age + height*smoke + sex, data=FEV)

c(AIC(mi1), AIC(mi2))

round(summary(mi2)$coef,2)

## [1] 703.8 700.5

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -4.35 0.23 -19.12 0.00

## age 0.07 0.01 7.17 0.00

## height 0.10 0.00 21.08 0.00

## smokecurrent smoker -2.61 1.10 -2.37 0.02

## sexmale 0.15 0.03 4.43 0.00

## height:smokecurrent smoker 0.04 0.02 2.30 0.02

For current smokers, the relationship between height and FEV is stronger than in
non-current smokers. In non-current smokers, we observe that a one-unit increase in
height is associated with a 0.10 increase in expected FEV. In current smokers, this
changes to a 0.14 increase in expected FEV.



Example interaction model with FEV data

qplot(height, fev, data=FEV, color=smoke,

geom=c("point", "smooth"), method="lm")
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Example interaction model with FEV data
The visreg package plots not the data but the partial residuals
(a.k.a. the adjusted variable) plot.

visreg(mi2, "height", by="smoke")
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Example interaction model with FEV data

visreg(mi2, "height", by="smoke", overlay=TRUE)
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Overview of variable transformations

The problems

� Non-linearity between X and Y −→ transform X

� Skewed distribution of X s/points with high leverage −→
transform X

� Non-constant variance −→ transform Y



Transforming your X variables

Transforming predictor variables can help with constant-variance
non-linear relationships.
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Transforming your X variables
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β interpretations with transformed X s

Transforming predictor variables can help with non-linearities, but
can make coefficient interpretations hard.

Possible solutions

� Interpret βs qualitatively across a region of interest: “We
found strong evidence for a inverse association, where values
of Y decreased inversely proportional to X across the
observed range (a, b).

� Occasionally, a “one unit change in X” can be meaningful:
e.g. loga X . A one unit change in loga X indicates a a-fold
increase in X .



β interpretations with transformed X s

Transforming predictor variables can help with non-linearities, but
can make coefficient interpretations hard.



Transforming Y s for non-constant variance

What to do ...

� Nothing; just use least squares and bootstrap

� Use weighted LS, GLS (Methods 3?)

� Use a variance stabilizing transformation

� Consider a generalized linear model (more soon)



Box-Cox Transformations

Outcome is raised to the λ power:

yλi = β0 + β1xi1 + β2xi2 + εi

� Estimate λ, a new parameter, by maximum likelihood.

� Some well-known choices of λ: 2, -1, 1/2

� By definition, when λ = 0, we specify yλi = loge yi



Wrap-up

New instruments for your regression tool-kit

� Interactions and data transformations are common
extensions/additions to regression models in practice.

� Both are simple to implement, challenging to interpret
correctly!

� But, you may not always need a interpretation, e.g. you might
just want a good prediction.


