MLR: miscellaneous practical tools

Author: Nicholas G Reich, Jeff Goldsmith

This material is part of the statsTeachR project

Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

Today's Lecture

A few miscellaneous but important building blocks for regression

- Advanced residual plots
- Interaction models
- Transformations of predictors

Typical regression plot: fitted line

Typical residual plot: fitted vs. residuals

slr1 <- lm(disease ~ crowding, data=data)
plot(slr1, which=1)</pre>

But this is more complicated with MLR: how do we visualize adjusted multivariable relationships?

Predictor vs. residual plots

library(car)
mlr1 <- lm(disease ~ crowding + education + airqual, data=data)
residualPlots(mlr1, tests=FALSE)</pre>

Checking model structure: adjusted variable plots!

- You can plot residuals against each of the predictors, or plot outcomes against predictors, BUT...
- Keep in mind the MLR uses adjusted relationships; scatterplots don't show that adjustment!

Adjusted variable plots (partial regression plots, added variable plots) can be useful.

Adjusted (or added) variable plots

- Regress y on everything but x_j ; take residuals $r_{y|-x_i}$
- Regress x_j on everything but x_j ; take residuals $r_{x_i|-x_i}$
- Regress $r_{y|-x_j}$ on $r_{x_j|-x_j}$; slope of this line will match β_j in the full MLR
- Plot of $r_{y|-x_i}$ against $r_{x_i|-x_i}$ shows the "adjusted" relationship
- This figure can be used to diagnose violations of linearity in MLR models.

AV plots

library(visreg)
avPlot(mlr1, variable="airqual")

What is interaction?

Definition of interaction

Interaction occurs when the relationship between two variables depends on the value of a third variable.

Some real world examples?

How to include interaction in a MLR

Model A: $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$ Model B: $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} \cdot x_{i2} + \epsilon_i$

Key points

- "easily" conceptualized with 1 continuous, 1 categorical variable
- models possible with other variable combinations, but interpretation/visualization harder
- two variable interactions are considered "first-order" interactions (often used to define a class of models)
- still a linear model, but no longer a strictly additive model

How to interpret an interaction model

For now, assume x_1 is continuous, x_2 is 0/1 binary. Model A: $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$ Model B: $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} \cdot x_{i2} + \epsilon_i$

How to interpret an interaction model

For now, assume x_1 is continuous, x_2 is 0/1 binary. Model A: $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$ Model B: $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} \cdot x_{i2} + \epsilon_i$

 β_3 is the change in the slope of the line that describes the relationship of $y \sim x_1$ comparing the groups defined by $x_2 = 0$ and $x_2 = 1$. $\beta_1 + \beta_3$ is the expected change in y for a one-unit increase in x_1 in the group $x_2 = 1$. $\beta_0 + \beta_2$ is the expected value of y in the group $x_2 = 1$ when $x_1 = 0$.

```
fev_i = \beta_0 + \beta_1 age_i + \beta_2 ht_i + \beta_3 sex_{i2} + \beta_4 smoke_i + \beta_5 ht \cdot smoke_i + \epsilon_i
```

```
mi1 <- lm(fev ~ age + height + smoke + sex, data=FEV)
mi2 <- lm(fev ~ age + height*smoke + sex, data=FEV)
c(AIC(mi1), AIC(mi2))
round(summary(mi2)$coef,2)</pre>
```

## [1] 703.8 700.5						
##		Estimate	Std.	Error	t value	Pr(> t)
<pre>## (Intercept)</pre>		-4.35		0.23	-19.12	0.00
## age		0.07		0.01	7.17	0.00
## height		0.10		0.00	21.08	0.00
## smokecurrent smo	oker	-2.61		1.10	-2.37	0.02
## sexmale		0.15		0.03	4.43	0.00
## height:smokecur	rent smoker	0.04		0.02	2.30	0.02

For current smokers, the relationship between height and FEV is stronger than in non-current smokers. In non-current smokers, we observe that a one-unit increase in height is associated with a 0.10 increase in expected FEV. In current smokers, this changes to a 0.14 increase in expected FEV.

```
qplot(height, fev, data=FEV, color=smoke,
    geom=c("point", "smooth"), method="lm")
```


The visreg package plots not the data but the partial residuals (a.k.a. the adjusted variable) plot.

visreg(mi2, "height", by="smoke")

height

Overview of variable transformations

The problems

- Non-linearity between X and $Y \longrightarrow$ transform X
- Skewed distribution of Xs/points with high leverage \longrightarrow transform X
- Non-constant variance \longrightarrow transform Y

Transforming your X variables

Transforming predictor variables can help with constant-variance non-linear relationships.

Transforming your X variables

β interpretations with transformed Xs

Transforming predictor variables can help with non-linearities, but can make coefficient interpretations hard.

Possible solutions

- Interpret βs qualitatively across a region of interest: "We found strong evidence for a inverse association, where values of Y decreased inversely proportional to X across the observed range (a, b).
- Occasionally, a "one unit change in X" can be meaningful:
 e.g. log_a X. A one unit change in log_a X indicates a *a*-fold increase in X.

 β interpretations with transformed Xs

Transforming predictor variables can help with non-linearities, but can make coefficient interpretations hard.

Transforming Ys for non-constant variance

What to do ...

- Nothing; just use least squares and bootstrap
- Use weighted LS, GLS (Methods 3?)
- Use a variance stabilizing transformation
- Consider a generalized linear model (more soon)

Outcome is raised to the λ power:

$$y_i^{\lambda} = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$$

- Estimate λ , a new parameter, by maximum likelihood.
- Some well-known choices of λ : 2, -1, 1/2
- By definition, when $\lambda = 0$, we specify $y_i^{\lambda} = \log_e y_i$

Wrap-up

New instruments for your regression tool-kit

- Interactions and data transformations are common extensions/additions to regression models in practice.
- Both are simple to implement, challenging to interpret correctly!
- But, you may not always need a interpretation, e.g. you might just want a good prediction.