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Today’s Lecture

! Model selection vs. model checking

! Stepwise model selection

! Criterion-based approaches



Model selection vs. model checking

Assume y |x = f (x) + ε

! model selection focuses on how you construct f (·);
! model checking asks whether the ε match the assumed form.



Why are you building a model in the first place?



Model selection: considerations

Things to keep in mind...

! Why am I building a model? Some common answers
" Estimate an association
" Test a particular hypothesis
" Predict new values

! What predictors will I allow?

! What predictors are needed?

! What forms for f (x) should I consider?

Different answers to these questions will yield different final
models.



Model selection: realities

All models are wrong. Some are more useful than others.
- George Box

! If we are asking which is the “true” model, we will have a bad
time

! In practice, issues with sample size, collinearity, and available
predictors are real problems

! It is often possible to differentiate between better models and
less-good models, though



Basic idea for model selection

A very general algorithm

! Specify a “class” of models

! Define a criterion to quantify the fit of each model in the class

! Select the model that optimizes the criterion you’re using

Again, we’re focusing on f (x) in the model specification. Once
you’ve selected a model, you should subject it to regression
diagnostics – which might change or augment the class of models
you specify or alter your criterion.



Classes of models

Some examples of classes of models

! Linear models including all subsets of x1, ..., xp

! Linear models including all subsets of x1, ..., xp and their first
order interactions

! All functions f (x1) such that f ′′(x1) is continuous

! Additive models of the form f (x) = f1(x1) + f2(x2) + f3(x3)...
where f ′′k (xk) is continuous



Popular criteria

! Adjusted R2

! Residual mean square error

! Akaike Information Criterion (AIC)

! Bayes Information Criterion (BIC)

! Prediction RSS (PRESS)

! F - or t-tests (stepwise selection)



Adjusted R2

! Recall:

R2 = 1− RSS

TSS

! Definition of adjusted R2:

R2
a = 1− RSS/(n − p − 1)

TSS/(n − 1)
= 1−

σ̂2
model

σ̂2
null

= 1− n − 1

n − p − 1
(1− R2)

! Minimizing the standard error of prediction means minimizing
σ̂2
model which in turn means maximizing R2

a

! Adding a predictor will not necessarily increase R2
a unless it

has some predictive value



Residual Mean Square Error

Equivalent to Adjusted R2...

RMSE =
RSS

n − p − 1

Can choose either based on

! the model with minimum RMSE, or

! the model that has RMSE approximately equal to the MSE
from the full model

Note: minimizing RMSE is equivalent to maximizing Adjusted R2



Sidebar: Confusing notation about p

p can mean different things

! p can be the number of covariates you have in your model
(not including your column of 1s and the intercept

! p can be the number of betas you estimate.

In these slides, p is the former: the number of covariates.



AIC

AIC (“Akaike Information Criterion”) measures goodness-of-fit
through RSS (equivalently, log likelihood) and penalizes model size:

AIC = n log(RSS/n) + 2(p + 1)

! Small AIC’s are better, but scores are not directly interpretable

! Penalty on model size tries to induce parsimony



Example of AIC in practice
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BIC

BIC (“Bayes Information Criterion”) similarly measures
goodness-of-fit through RSS (equivalently, log likelihood) and
penalizes model size:

BIC = n log(RSS/n) + (p + 1) log(n)

! Small BIC’s are better, but scores are not directly interpretable

! AIC and BIC measure goodness-of-fit through RSS, but use
different penalties for model size. They won’t always give the
same answer

Bonus link! Bolker on AIC vs. BIC



Example of BIC in practice

Vasantha and Venkatesan (2014) PLoS ONE



PRESS

Prediction residual sum of squares is the most clearly focused on
prediction

PRESS =
∑

(yi − xTi β̂(−i))
2

Looks computationally intensive, but for linear regression models
this is equivalent to

PRESS =
∑(

ε̂i
1− hii

)2



Example of model selection in practice

Croudace et al (2003) Amer J Epidemiology



Model building is an art

Putting this all together requires

! knowledge of the process generating the data

! detailed data exploration

! checking assumptions

! careful model building

! patience patience patience



Sequential methods: PROCEED WITH CAUTION

Stepwise selection methods are dangerous if you want accurate
inferences

! There are many potential models – usually exhausting the
model space is difficult or infeasible

! Stepwise methods don’t consider all possibilities

! One paper∗ showed that stepwise analyses produced models
that...

! represented noise 20-75% of the time
! contained <50% of actual predictors
! correlation btw predictors −→ including more predictors
! number of predictors correlated with number of noise

predictors included

∗ Derksen and Keselman (1992) British J Math Stat Psych



Sequential methods: “forward selection”

! Start with “baseline” (usually intercept-only) model

! For every possible model that adds one term, evaluate the
criterion you’ve settled on

! Choose the one with the best “score” (lowest AIC, smallest
p-value)

! For every possible model that adds one term to the current
model, evaluate your criterion

! Repeat until either adding a new term doesn’t improve the
model or all variables are included



Sequential methods: “backward selection/elimination”

! Start with every term in the model

! Consider all models with one predictor removed

! Remove the term that leads to the biggest score improvement

! Repeat until removing additional terms doesn’t improve your
model



MORE concerns with sequential methods

! It’s common to treat the final model as if it were the only
model ever considered – to base all interpretation on this
model and to assume the inference is accurate

! This doesn’t really reflect the true model building procedure,
and can misrepresent what actually happened

! Inference is difficult in this case; it’s hard to write down a
statistical framework for the entire procedure

! Predictions can be made from the final model, but uncertainty
around predictions will be understated

! P-values, CIs, etc will be incorrect



Variable selection in polynomial models

A quick note about polynomials. If you fit a model of the form

yi = β0 + β1x + β2x
2 + εi

and find the quadratic term is significant but the linear term is
not...

! You should still keep the linear term in the model

! Otherwise, your model is sensitive to centering – shifting x
will change your model

! Using orthogonal polynomials helps with this



Variable selection: the intercept

A quick note about the intercept in MLR. If you fit a model of the
form

yi = β0 + β1x1 + β2x2 + ...+ εi

and find the intercept term is not significant ...

! in general, you should still keep the intercept in the model

! Otherwise, your model is very strongly restricted in the linear
form it can take!



Sample size can limit the number of predictors

p (total number of βs) should be < m
15
, where

Type of Response Variable Limiting sample size m

Continuous n (total sample size)
Binary min(n1, n2)

Ordinal (k categories) n − 1
n2

∑k
i=1 n

3
i

Failure (survival) time number of failures

Table adapted from Harrel (2012) notes from “Regression Modeling Strategies” workshop.



A more modern approach: shrinkage/penalization

Penalized regression

! adds an explicit penalty to the least squares criterion

! keeps regression coefficients from being too large, or can
shrink coefficients to zero

! Keywords for methods: LASSO, Ridge Regression

! More in Biostat Methods 3 (fall semester)!

Whole branches of modern statistics are devoted to figuring out
what to do when p ≥ n.



Today’s big ideas

Model selection key points:

! There is no one-size-fits-all formula for model selection.

! Consult a variety of metrics, weight more heavily ones that
may be more suited to your application (e.g. PRESS for
prediction,...)

! Beware of black-box selection methods.

! Consider penalized regression methods.


