Overview of regression

Author: Nicholas G Reich, Jeff Goldsmith

This material is part of the statsTeachR project
Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

What is regression?

An informal introduction...

State-level SAT score data (1994-95)

State-level SAT score data (1994-95)

What can we conclude from all of this? (BTW, this is an example of "Simpson's Paradox".)

Beware of correlation!

Beware of correlation!

1

[^0]
What is regression?

[Now, more formally...]
"...to understand as far as possible with the available data how the conditional distribution of the response y varies across subpopulations determined by the possible values of the predictor or predictors." - Cook and Weisberg (1999)

Good overview on Wikipedia.

What is regression?

- The goal is to learn about the relationship between a covariate (predictor) of interest and an outcome of interest.
- Focus on prediction
- Focus on description
- Regression is an exercise in inferential statistics: we are drawing evidence and conclusions from data about "noisy" systems.

Example data: heights of mothers and daughters

Heights of $n=1375$ mothers in the UK under the age of 65 and one of their adult daughters over the age of 18 (collected and organized during the period 1893-1898 by the famous statistician Karl Pearson)

```
require(alr3)
data(heights)
head(heights)
```

\#\#	Mheight	Dheight
\#\# 1	59.7	55.1
\#\# 2	58.2	56.5
\#\# 3	60.6	56.0
\#\# 4	60.7	56.8
\#\# 5	61.8	56.0
\#\# 6	55.5	57.9

Example data: heights of mothers and daughters

require (ggplot2)
qplot(Mheight, Dheight, data=heights, col="red", alpha=.5) + theme(legend.position="none")

Circle of Life

What we want in regression

Given some data $y, x_{1}, x_{2}, \ldots x_{p}$, we are interesting finding a likely value for y given the value of predictors $x \equiv x_{1}, x_{2}, \ldots x_{p}$.

- Often, but not always, y is continuous. (Called outcome, response, "dependent variable").
- The x 's can be continuous, binary, categorical. (Called predictor, covariate, "independent variable").
- We want $\mathbb{E}(y \mid x)=f(x)$; we observe $y=f(x)+\epsilon$.

Example data: heights of mothers and daughters

Regression model

The process of using data to describe the relationship between outcomes and predictors is called modeling.

- Models are models, not reality.
- "All models are wrong, but some are useful."
- Introduce structure to $f(x)$ to make the problem of estimation easier (this also introduces elements not found in the data, including judgement calls about important features and assumptions about the world).
- We largely focus on parametric models $f(x)=f(x ; \beta)$ and worry about estimating β.

Linear Regression Models

A linear regression model is a particular type of parametric regression.

- Assume $f(x ; \beta)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots$
- Focus is on $\beta_{0}, \beta_{1}, \ldots$ Slope
- "Linear" refers to the β 's, not the x 's:
- $f(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}$ is a linear model
- $f(x)=\beta_{0}+x^{\beta_{1}}$ is not

Why is linear regression so popular?

- Easy to implement
- Lots of theory
- Straightforward interpretations
- Surprisingly flexible
- Good approximation in many cases

What do we need to assume?

Typical assumptions for a SLR model

- A1: The model: e.g. $y_{i}=f\left(x_{i} ; \beta\right)+\epsilon_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\epsilon_{i}$
- A2: Unbiased errors: $\mathbb{E}\left[\epsilon_{i} \mid x_{i}\right]=\mathbb{E}\left[\epsilon_{i}\right]=0$
- A3: Uncorrelated errors: $\operatorname{cov}\left(\epsilon_{i}, \epsilon_{j}\right)=0$ for $i \neq j$.
- A4: Constant variance: $\operatorname{Var}\left[y_{i} \mid x_{i}\right]=\sigma^{2}$
- A5: Probability distribution: e.g. $\epsilon_{i} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$.
- A6: Representative sampling: generalize to population.

Things to come

- Where do estimates $\hat{\beta}_{0}, \hat{\beta}_{1}$ come from?
- How do we draw inference about these estimates?
- What about more complex models?

[^0]: ${ }^{1}$ Hat tip to www.tylervigen.com

