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Multiple linear regression model

� Observe data (yi , xi1, . . . , xip) for subjects 1, . . . , n. Want to
estimate β0, β1, . . . , βp in the model

yi = β0 + β1xi1 + . . .+ β1xip + εi ; εi
iid∼ (0, σ2)

� Assumptions (residuals have mean zero, constant variance, are
independent) are as in SLR

� Impose linearity which (as in the SLR) is a big assumption

� Our primary interest will be E (y |x)

� Eventually estimate model parameters using least squares



Omitted variable bias

What happens if the true regression model is

yi = β0 + β1xi ,1 + β2xi ,2 + εi

but we ignore x2 and fit the simple linear regression

yi = β∗0 + β∗1xi ,1 + ε∗i

Does β∗1 = β1?



Omitted variable bias

When should you be concerned?

If both of the following conditions are met, then β∗1 = β1:

� The omitted variable is unrelated to the outcome

� The omitted variable is uncorrelated with the retained variable

Extra credit for problem set 1: create a simulation where you
show an example of omitted variable bias.



Matrix notation

� Observe data (yi , xi1, . . . , xip) for subjects 1, . . . , n. Want to
estimate β0, β1, . . . , βp in the model

yi = β0 + β1xi1 + . . .+ β1xip + εi ; εi
iid∼ (0, σ2)

� Notation is cumbersome. To fix this, let

� xi = [1, xi1, . . . , xip]

� βT = [β0, β1, . . . ,βp]
� Then yi = xiβ + εi



Multiple linear regressoion
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� Then we can write the model in a more compact form:

yn×1 = Xn×(p+1)β(p+1)×1 + εn×1

� X is called the design matrix



Matrix notation

y = Xβ + ε

� ε is a random vector rather than a random variable

� E (ε) = 0 and Var(ε) = σ2I

� Note that Var is an abuse of notation; in the present context
it really means the “variance-covariance matrix”



Mean, variance and covariance of a random vector

� Let yT = [y1, . . . , yn] be an n-component random vector.
Then its mean and variance are defined as

E (y)T = [E (y1), . . . ,E (yn)]

Var(y) = E
[
(y − Ey)(y − Ey)T

]
= E (yyT )− (Ey)(Ey)T

� Let y and z be an n-component and an m-component random
vector respectively. Then their covariance is an n ×m matrix
defined by

Cov(y, z) = E
[
(y − Ey)(z− z)T

]



Least squares

As in simple linear regression, we want to find the β that
minimizes the residual sum of squares.

RSS(β) =
∑
i

ε2i = εT ε

After taking the derivative, setting equal to zero, we obtain:

β̂ = X(XTX)−1Xy



Sampling distribution of β̂

If our usual assumptions are satisfied and ε
iid∼ N

[
0, σ2

]
then

β̂ ∼ N
[
β, σ2(XTX)−1

]
.

� This will be used later for inference.

� Even without Normal errors, asymptotic Normality of LSEs is
possible under reasonable assumptions.



Definitions

� Fitted values: ŷ = Xβ̂ = X(XTX)−1Xy = Hy

� Residuals / estimated errors: ε̂ = y − ŷ

� Residual sum of squares:
∑n

i=1 ε̂i
2 = ε̂T ε̂

� Residual variance: σ̂2 = RSS
n−p−1

� Degrees of freedom: n − p − 1



R2 and sums of squares

� Regression sum of squares SSreg =
∑

(ŷi − ȳ)2

� Residual sum of squares SSres =
∑

(yi − ŷi )
2

� Total sum of squares SStot =
∑

(yi − ȳ)2

� Coefficient of determination

R2 = 1−
∑

(yi − ŷi )
2∑

(yi − ȳ)2
=

∑
(ŷi − ȳ)2∑
(yi − ȳ)2



Hat matrix

Some properties of the hat matrix:

� It is a projection matrix: HH = H

� It is symmetric: HT = H

� The residuals are ε̂ = (I−H)y

� The inner product of (I−H)y and Hy is zero (predicted
values and residuals are uncorrelated).



Projection space interpretation

The hat matrix projects y onto the column space of X.
Alternatively, minimizing the RSS(β) is equivalent to minimizing
the Euclidean distance between y and the column space of X.



Lung Data Example (con’t from last clas)

mlr2 <- lm(disease ~ crowding + education + airqual,

data=dat, x=TRUE, y=TRUE)

X = mlr2$x

y = mlr2$y

(betaHat = solve( t(X) %*% X) %*% t(X) %*% y )

## [,1]

## (Intercept) -7.7505

## crowding 1.3128

## education 1.4377

## airqual 0.2881

coef(mlr2)

## (Intercept) crowding education airqual

## -7.7505 1.3128 1.4377 0.2881



Today’s big ideas

� Multiple linear regression models, interpretation, notation,
biases


