Multiple Linear Regression: Notation and Estimation

Author: Nicholas G Reich, Jeff Goldsmith

This material is part of the statsTeachR project

Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

Multiple linear regression model

■ Observe data $(y_i, x_{i1}, ..., x_{ip})$ for subjects 1, ..., n. Want to estimate $\beta_0, \beta_1, ..., \beta_p$ in the model

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_1 x_{ip} + \epsilon_i; \ \epsilon_i \stackrel{iid}{\sim} (0, \sigma^2)$$

- Assumptions (residuals have mean zero, constant variance, are independent) are as in SLR
- Impose linearity which (as in the SLR) is a big assumption
- Our primary interest will be $E(y|\mathbf{x})$
- Eventually estimate model parameters using least squares

Omitted variable bias

What happens if the true regression model is

$$y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \epsilon_i$$

but we ignore x_2 and fit the simple linear regression

$$y_i = \beta_0^* + \beta_1^* x_{i,1} + \epsilon_i^*$$

Does $\beta_1^* = \beta_1$?

Omitted variable bias

When should you be concerned?

If both of the following conditions are met, then $\beta_1^* = \beta_1$:

- The omitted variable is unrelated to the outcome
- The omitted variable is uncorrelated with the retained variable

Extra credit for problem set 1: create a simulation where you show an example of omitted variable bias.

Matrix notation

• Observe data $(y_i, x_{i1}, \dots, x_{ip})$ for subjects $1, \dots, n$. Want to estimate $\beta_0, \beta_1, \dots, \beta_p$ in the model

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_1 x_{ip} + \epsilon_i; \ \epsilon_i \stackrel{iid}{\sim} (0, \sigma^2)$$

- Notation is cumbersome. To fix this, let
 - $\mathbf{x}_i = [1, x_{i1}, \dots, x_{ip}]$
 - $\beta^T = [\beta_0, \beta_1, \dots, \beta_p]$
 - Then $y_i = \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i$

Multiple linear regressoion

Let

$$\mathbf{y} = \left[\begin{array}{c} y_1 \\ \vdots \\ y_n \end{array} \right], \quad \mathbf{X} = \left[\begin{array}{ccc} 1 & x_{11} & \dots & x_{1\rho} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n1} & \dots & x_{n\rho} \end{array} \right], \quad \boldsymbol{\beta} = \left[\begin{array}{c} \beta_0 \\ \vdots \\ \beta_p \end{array} \right], \quad \boldsymbol{\epsilon} = \left[\begin{array}{c} \epsilon_1 \\ \vdots \\ \epsilon_n \end{array} \right]$$

■ Then we can write the model in a more compact form:

$$\mathbf{y}_{n imes 1} = \mathbf{X}_{n imes (p+1)} oldsymbol{eta}_{(p+1) imes 1} + \epsilon_{n imes 1}$$

■ **X** is called the *design matrix*

Matrix notation

$$y = X\beta + \epsilon$$

- ullet is a random vector rather than a random variable
- $E(\epsilon) = 0$ and $Var(\epsilon) = \sigma^2 I$
- Note that *Var* is an abuse of notation; in the present context it really means the "variance-covariance matrix"

Mean, variance and covariance of a random vector

Let $\mathbf{y}^T = [y_1, \dots, y_n]$ be an *n*-component random vector. Then its mean and variance are defined as

$$E(\mathbf{y})^T = [E(y_1), \dots, E(y_n)]$$

 $Var(\mathbf{y}) = E[(\mathbf{y} - E\mathbf{y})(\mathbf{y} - E\mathbf{y})^T] = E(\mathbf{y}\mathbf{y}^T) - (E\mathbf{y})(E\mathbf{y})^T$

■ Let \mathbf{y} and \mathbf{z} be an n-component and an m-component random vector respectively. Then their covariance is an $n \times m$ matrix defined by

$$Cov(\mathbf{y}, \mathbf{z}) = E[(\mathbf{y} - E\mathbf{y})(\mathbf{z} - \mathbf{z})^T]$$

Least squares

As in simple linear regression, we want to find the $oldsymbol{eta}$ that minimizes the residual sum of squares.

$$RSS(\beta) = \sum_{i} \epsilon_{i}^{2} = \epsilon^{T} \epsilon$$

After taking the derivative, setting equal to zero, we obtain:

$$\hat{oldsymbol{eta}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}\mathbf{y}$$

Sampling distribution of $\hat{oldsymbol{eta}}$

If our usual assumptions are satisfied and $\epsilon \stackrel{\it iid}{\sim} N\left[0,\sigma^2\right]$ then

$$\hat{\boldsymbol{\beta}} \sim \mathsf{N}\left[\boldsymbol{\beta}, \sigma^2(\mathbf{X}^T\mathbf{X})^{-1}\right].$$

- This will be used later for inference.
- Even without Normal errors, asymptotic Normality of LSEs is possible under reasonable assumptions.

Definitions

- Fitted values: $\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}\mathbf{y} = \mathbf{H}\mathbf{y}$
- lacksquare Residuals / estimated errors: $\hat{m{\epsilon}} = {f y} \hat{f y}$
- Residual sum of squares: $\sum_{i=1}^{n} \hat{\epsilon_i}^2 = \hat{\epsilon}^T \hat{\epsilon}$
- Residual variance: $\hat{\sigma^2} = \frac{RSS}{n-p-1}$
- Degrees of freedom: n p 1

R^2 and sums of squares

- Regression sum of squares $SS_{reg} = \sum (\hat{y}_i \bar{y})^2$
- Residual sum of squares $SS_{res} = \sum (y_i \hat{y}_i)^2$
- Total sum of squares $SS_{tot} = \sum (y_i \bar{y})^2$
- Coefficient of determination

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}} = \frac{\sum (\hat{y}_{i} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

Hat matrix

Some properties of the hat matrix:

- It is a projection matrix: **HH** = **H**
- It is symmetric: $\mathbf{H}^T = \mathbf{H}$
- The residuals are $\hat{\epsilon} = (\mathbf{I} \mathbf{H})\mathbf{y}$
- The inner product of (I H)y and Hy is zero (predicted values and residuals are uncorrelated).

Projection space interpretation

The hat matrix projects \mathbf{y} onto the column space of \mathbf{X} . Alternatively, minimizing the $RSS(\beta)$ is equivalent to minimizing the Euclidean distance between \mathbf{y} and the column space of \mathbf{X} .

Lung Data Example (con't from last clas)

```
mlr2 <- lm(disease ~ crowding + education + airqual,
          data=dat, x=TRUE, y=TRUE)
X = mlr2$x
y = mlr2\$y
(betaHat = solve(t(X) %*% X) %*% t(X) %*% y)
                 \lceil , 1 \rceil
##
## (Intercept) -7.7505
## crowding 1.3128
## education 1.4377
## airqual 0.2881
coef(mlr2)
## (Intercept) crowding education
                                         airqual
## -7.7505 1.3128 1.4377 0.2881
```

Today's big ideas

 Multiple linear regression models, interpretation, notation, biases