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Multiple linear regression model

m Observe data (y;, X1, .. ., Xjp) for subjects 1,...,n. Want to
estimate 3o, 31, ..., Bp in the model

iid
Vi = Bo+ Bixi1 + ...+ Bixip +€i; € ~ (0,07)

m Assumptions (residuals have mean zero, constant variance, are
independent) are as in SLR

m Impose linearity which (as in the SLR) is a big assumption
m Our primary interest will be E(y|x)

m Eventually estimate model parameters using least squares



Omitted variable bias

What happens if the true regression model is
yi = Bo + Pixi1 + Baxi2 + €;
but we ignore x> and fit the simple linear regression
yi =P+ Bixi1+e€

Does ] = 17



Omitted variable bias

When should you be concerned?
If both of the following conditions are met, then 3] = B1:
m The omitted variable is unrelated to the outcome
m The omitted variable is uncorrelated with the retained variable

Extra credit for problem set 1: create a simulation where you
show an example of omitted variable bias.



Matrix notation

m Observe data (y;, X1, . . ., Xjp) for subjects 1,...,n. Want to
estimate (3o, 31, ..., Bp in the model

iid
yi = Bo+ Bixi + ...+ Pixip + €5 € ~ (0,07)

m Notation is cumbersome. To fix this, let

| | X,'Z[].,X,'17...,X,'p]
u IBT:[ﬁ07617"'7ﬂp]
m Then y; =x;8+¢;



Multiple linear regressoion

m Let

m Then we can write the model in a more compact form:

Ynx1 = Xn><(p+l)6(p+l)><1 + €nx1

m X is called the design matrix



Matrix notation

y=XB+e

m ¢ is a random vector rather than a random variable
m E(€) =0 and Var(e) = o2/

m Note that Var is an abuse of notation; in the present context
it really means the “variance-covariance matrix”



Mean, variance and covariance of a random vector

m Lety” =[y1,...,yn] be an n-component random vector.
Then its mean and variance are defined as

E(Y)T = [E(yl)’ ) E(yn)]
Var(y) = E|(y—Ey)(y—Ey)"| =E(yy") — (Ey)(Ey)"

m Let y and z be an n-component and an m-component random
vector respectively. Then their covariance is an n X m matrix
defined by

Cov(y,z) = E[(y — Ey)(z—2)7]



Least squares

As in simple linear regression, we want to find the 3 that
minimizes the residual sum of squares.

RSS(B) =) e =¢€e¢

1

After taking the derivative, setting equal to zero, we obtain:

B =X(XTX)"1xy



Sampling distribution of 3

If our usual assumptions are satisfied and N [0, 02] then
BN [B,02(XTx) .

m This will be used later for inference.

m Even without Normal errors, asymptotic Normality of LSEs is
possible under reasonable assumptions.



Definitions

m Fitted values: § = X3 = X(XTX) !Xy = Hy

m Residuals / estimated errors: € =y — §

m Residual sum of squares: S._ é? =¢e'e
m Residual variance: 02 = nf,si 1

m Degrees of freedom: n—p —1



R? and sums of squares

Regression sum of squares SS,eg = > (9i — ¥)?

= Residual sum of squares SSes = >_(yi — ¥i)?
m Total sum of squares SSior = >_(yi — 7)?

m Coefficient of determination

p2_ 1 Xi—9)? _ X(i—9)

Yi—y)? i—7)?



Hat matrix

Some properties of the hat matrix:
m It is a projection matrix: HH=H
m It is symmetric: HT = H
m The residuals are € = (I — H)y

m The inner product of (I — H)y and Hy is zero (predicted
values and residuals are uncorrelated).



Projection space interpretation

The hat matrix projects y onto the column space of X.
Alternatively, minimizing the RSS(3) is equivalent to minimizing
the Euclidean distance between y and the column space of X.



Lung Data Example (con't from last clas)

mlr2 <- Im(disease ~ crowding + education + airqual,
data=dat, x=TRUE, y=TRUE)

X = mlr2$x

y = mlr28y

(betaHat = solve( t(X) %*% X) %% t(X) %*% y )

## [,1]

## (Intercept) -7.7505

## crowding 1.3128

## education 1.4377

## airqual 0.2881

coef (mlr2)

## (Intercept) crowding  education airqual

## -7.7505 1.3128 1.4377 0.2881



Today's big ideas

m Multiple linear regression models, interpretation, notation,
biases



