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Which data show a stronger association?
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Goals for this class

You should be able to...

! interpret regression coefficients.

! derive estimators for SLR coefficients.

! implement a SLR from scratch (i.e. not using lm()).

! explain why some points have more influence than others on
the fitted line.



Regression modeling

! Want to use predictors to learn about the outcome
distribution, particularly conditional expected value.

! Formulate the problem parametrically

E (y | x) = f (x ;β) = β0 + β1x1 + β2x2 + . . .

! (Note that other useful quantities, like covariance and
correlation, tell you about the joint distribution of y and x)



Brief Detour: Covariance and Correlation

cov(x , y) = E [(x − µx)(y − µy )]

cor(x , y) =
cov(x , y)√
var(x)var(y)



Simple linear regression

! Linear models are a special case of all regression models;
simple linear regression is the simplest place to start

! Only one predictor:

E (y | x) = f (x ;β) = β0 + β1x1

! Useful to note that x0 = 1 (implicit definition)

! Somehow, estimate β0,β1 using observed data.



Coefficient interpretation



Coefficient interpretation



Step 1: Always look at the data!

! Plot the data using, e.g. the plot() or qplot() functions

! Do the data look like the assumed model?

! Should you be concerned about outliers?

! Define what you expect to see before fitting any model.
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Least squares estimation

! Observe data (yi , xi ) for subjects 1, . . . , I . Want to estimate
β0,β1 in the model

yi = β0 + β1xi + εi ; εi
iid∼ (0,σ2)

! Recall the assumptions:

! A2: E (ε | x) = E (ε) = 0
! A3: Uncorrelated errors
! A4: Constant variance
! A5: Normal distribution not needed for least squares, but is

needed for inference.]
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Least squares estimation

! Recall that for a single sample yi , i ∈ 1, . . . ,N, the sample
mean µ̂y minimizes the sum of squared deviations.

RSS(µy ) =
N∑

i=1

(yi − µy )
2



Least squares estimation

Find β̂0 and β1. By minimizing RSS relative to each parameter.

RSS(β0,β1) =
N∑

i=1

(yi − E[yi |xi ])2

We obtain

β̂0 = b0 = ȳ − b1x̄

β̂1 = b1 =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2



Notes about LSE

Relationship between correlation and slope

ρ =
cov(x , y)√
var(x)var(y)

; β̂1 =
cov(x , y)

var(x)

Why we need to keep watch for outliers

β̂1 =

∑
(yi − ȳ)(xi − x̄)∑

(xi − x̄)2

=

∑ yi−ȳ
xi−x̄ (xi − x̄)2
∑

(xi − x̄)2

=
∑ yi − ȳ

xi − x̄
ωi

Note that weight ωi increases as xi gets further away from x̄ .



Geometric interpretation of least squares

Least squares minimizes the sum of squared vertical distances
between observed and estimated y ’s:

min
β0,β1

I∑

i=1

(yi − (β0 + β1xi ))
2



Least squares foreshadowing

! Didn’t have to choose to minimize squares – could minimize
absolute value, for instance.

! Least squares estimates turn out to be a “good idea” –
unbiased, BLUE.

! Later we’ll see about maximum likelihood as well.


