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Today’s Lecture

A few important building blocks for regression

� Interaction models

� Transformations of predictors



What is interaction?

Definition of interaction
Interaction occurs when the relationship between two variables
depends on the value of a third variable.
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[Good overview: KNN pp. 306–313]



Some real world examples?



How to include interaction in a MLR

Model A: yi = β0 + β1xi1 + β2xi2 + εi
Model B: yi = β0 + β1xi1 + β2xi2 + β3xi1 · xi2 + εi

Key points

� “easily” conceptualized with 1 continuous, 1 categorical
variable

� models possible with other variable combinations, but
interpretation/visualization harder

� two variable interactions are considered “first-order”
interactions (often used to define a class of models)

� still a linear model, but no longer a strictly additive model



How to interpret an interaction model

For now, assume x1 is continuous, x2 is 0/1 binary.
Model A: yi = β0 + β1xi1 + β2xi2 + εi
Model B: yi = β0 + β1xi1 + β2xi2 + β3xi1 · xi2 + εi



Example interaction model with FEV data

fevi = β0 +β1agei +β2hti +β3sexi2 +β4smokei +β5ht · smokei + εi

mi1 <- lm(fev ~ age + ht + sex + smoke, data = dat)

mi3 <- lm(fev ~ age + ht * smoke + sex, data = dat)

c(AIC(mi1), AIC(mi3))

## [1] 703.8 700.5

round(summary(mi3)$coef, 2)

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -4.35 0.23 -19.12 0.00

## age 0.07 0.01 7.17 0.00

## ht 0.10 0.00 21.08 0.00

## smokesmoker -2.61 1.10 -2.37 0.02

## sexmale 0.15 0.03 4.43 0.00

## ht:smokesmoker 0.04 0.02 2.30 0.02



Example interaction model with FEV data

qplot(ht, fev, data=dat, color=smoke,

geom=c("point", "smooth"), method="lm")
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Example interaction model with FEV data
The visreg package plots not the data but the partial residuals
(a.k.a. the adjusted variable) plot.

require(visreg)

visreg(mi3, "ht", by = "smoke")
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Example interaction model with FEV data

visreg(mi3, "ht", by = "smoke", overlay = TRUE)
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Overview of variable transformations

The problems

� Non-linearity between X and Y −→ transform X

� Skewed distribution of X s/points with high leverage −→
transform X

� Non-constant variance −→ transform Y

[More info: KNN Ch 3.9, pp. 129–137]



Transforming your X variables

Transforming predictor variables can help with constant-variance
non-linear relationships.
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Transforming your X variables
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β interpretations with transformed X s

Transforming predictor variables can help with non-linearities, but
can make coefficient interpretations hard.

Possible solutions

� Interpret βs qualitatively across a region of interest: “We
found strong evidence for a inverse association, where values
of Y decreased inversely proportional to X across the
observed range (a, b).

� Occasionally, a “one unit change in X” can be meaningful:
e.g. loga X . A one unit change in loga X indicates a a-fold
increase in X .



β interpretations with transformed X s

Transforming predictor variables can help with non-linearities, but
can make coefficient interpretations hard.



Transforming Y s for non-constant variance

What to do ...

� Nothing; just use least squares and bootstrap

� Use weighted LS, GLS (Methods 3?)

� Use a variance stabilizing transformation

� Consider a generalized linear model (more soon)



Box-Cox Transformations

Outcome is raised to the λ power:

yλi = β0 + β1xi1 + β2xi2 + εi

� Estimate λ, a new parameter, by maximum likelihood.

� Some well-known choices of λ: 2, -1, 1/2

� By definition, when λ = 0, we specify yλi = loge yi

[More detailed info: KNN Ch 3.9, pp. 134–137]



Wrap-up

New instruments for your regression tool-kit

� Interactions and data transformations are common
extensions/additions to regression models in practice.

� Both are simple to implement, challenging to interpret
correctly!

� But, you may not always need a interpretation, e.g. you might
just want a good prediction.


