MLR Interactions and variable transformations

Author: Nicholas G Reich, Jeff Goldsmith

This material is part of the statsTeachR project

Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

Today's Lecture

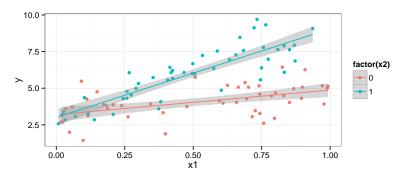
A few important building blocks for regression

- Interaction models
- Transformations of predictors

What is interaction?

Definition of interaction

Interaction occurs when the relationship between two variables depends on the value of a third variable.



[Good overview: KNN pp. 306-313]

How to include interaction in a MLR

Model A:
$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$$

Model B: $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} \cdot x_{i2} + \epsilon_i$

Key points

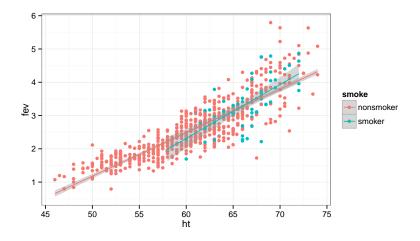
- "easily" conceptualized with 1 continuous, 1 categorical variable
- models possible with other variable combinations, but interpretation/visualization harder
- two variable interactions are considered "first-order" interactions (often used to define a class of models)
- still a linear model, but no longer a strictly additive model

How to interpret an interaction model

For now, assume x_1 is continuous, x_2 is 0/1 binary. Model A: $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$ Model B: $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} \cdot x_{i2} + \epsilon_i$

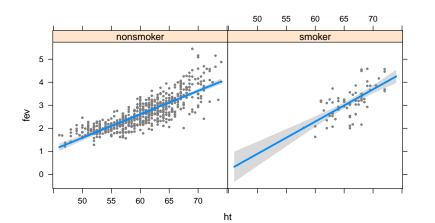
$$fev_i = \beta_0 + \beta_1 age_i + \beta_2 ht_i + \beta_3 sex_{i2} + \beta_4 smoke_i + \beta_5 ht \cdot smoke_i + \epsilon_i$$

```
mi1 \leftarrow lm(fev ~age + ht + sex + smoke, data = dat)
mi3 <- lm(fev ~ age + ht * smoke + sex, data = dat)
c(AIC(mi1), AIC(mi3))
## [1] 703.8 700.5
round(summary(mi3)$coef, 2)
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                -4.35 0.23 -19.12
                                         0.00
                  0.07 0.01 7.17
                                         0.00
## age
                 0.10 0.00 21.08 0.00
## ht.
## smokesmoker -2.61 1.10 -2.37
                                         0.02
        0.15 0.03 4.43 0.00
## sexmale
## ht:smokesmoker 0.04 0.02 2.30
                                          0.02
```

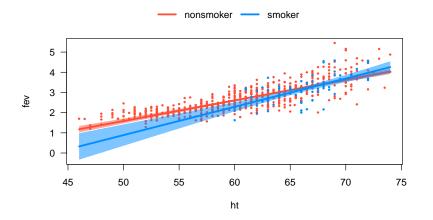


The visreg package plots not the data but the partial residuals (a.k.a. the adjusted variable) plot.

```
require(visreg)
visreg(mi3, "ht", by = "smoke")
```



```
visreg(mi3, "ht", by = "smoke", overlay = TRUE)
```



Overview of variable transformations

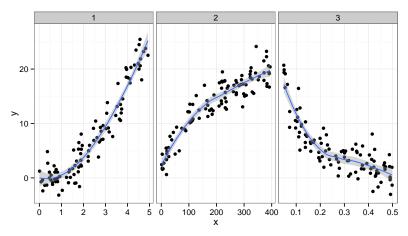
The problems

- Non-linearity between X and $Y \longrightarrow \text{transform } X$
- Skewed distribution of Xs/points with high leverage \longrightarrow transform X
- Non-constant variance \longrightarrow transform Y

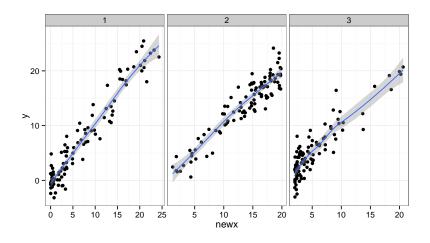
[More info: KNN Ch 3.9, pp. 129-137]

Transforming your *X* variables

Transforming predictor variables can help with constant-variance non-linear relationships.



Transforming your X variables



β interpretations with transformed Xs

Transforming predictor variables can help with non-linearities, but can make coefficient interpretations hard.

Possible solutions

- Interpret β s qualitatively across a region of interest: "We found strong evidence for a inverse association, where values of Y decreased inversely proportional to X across the observed range (a,b).
- Occasionally, a "one unit change in X" can be meaningful:
 e.g. log_a X. A one unit change in log_a X indicates a a-fold increase in X.

 β interpretations with transformed Xs

Transforming predictor variables can help with non-linearities, but can make coefficient interpretations hard.

Transforming Ys for non-constant variance

What to do ...

- Nothing; just use least squares and bootstrap
- Use weighted LS, GLS (Methods 3?)
- Use a variance stabilizing transformation
- Consider a generalized linear model (more soon)

Box-Cox Transformations

Outcome is raised to the λ power:

$$y_i^{\lambda} = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$$

- **E**stimate λ , a new parameter, by maximum likelihood.
- Some well-known choices of λ : 2, -1, 1/2
- By definition, when $\lambda = 0$, we specify $y_i^{\lambda} = \log_e y_i$

[More detailed info: KNN Ch 3.9, pp. 134-137]

Wrap-up

New instruments for your regression tool-kit

- Interactions and data transformations are common extensions/additions to regression models in practice.
- Both are simple to implement, challenging to interpret correctly!
- But, you may not always need a interpretation, e.g. you might just want a good prediction.