

Author: Nicholas G Reich, Jeff Goldsmith

This material is part of the statsTeachR *project*

Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en US

Today's Lecture

- **In Model selection vs. model checking**
- **Example 2** Continue with model checking (regression diagnostics)

Model selection vs. model checking

 $\beta_{1}+\beta_{1}X_{1}+\beta_{2}X_{2}...$ Assume $y|\mathbf{x} = f(\mathbf{x}) + \epsilon$

 \blacksquare model selection focuses on how you construct $f(\cdot)$; **Model checking asks whether the** ϵ **match the assumed form.**

Model checking: possible challenges

Two major areas of concern

Example 13 Incording 12 Global lack of fit, or general breakdown of model assumptions

- \blacktriangleright Linearity
- \blacktriangleright Unbiased, uncorrelated errors $E(\epsilon | x) = E(\epsilon) = 0$
- Constant variance $Var(y|x) = Var(\epsilon|x) = \sigma^2$
- \blacktriangleright Independent errors
- \blacktriangleright Normality of errors
- **E** Effect of influential points and outliers

Model checking: possible solutions + stutegies

Example 1 Global lack of fit, or general breakdown of model assumptions

- Residual analysis QQ plots, residual plots against fitted values and predictors
- \blacktriangleright Adjusted variable plots
- **E** Effect of influential points and outliers
	- \triangleright Measure of leverage, influence, outlying-ness

Residual plots: verifying assumptions

Which assumptions are these plots evaluating?

QQ-plots for checking Normality of residuals

QQ plot defined

QQ-plot stands for quantile-quantile plot, and is used to compare two distributions. If the two distributions are the same, then each point (which represents a quantile from each distribution) should lie along t \ge $\frac{1}{2}$ \sim $\frac{1}{1}$ \sim For a single (*x, y*) point

- $\mathbf{x} = \mathbf{a}$ specific quantile for the N(0,1) distribution
- $y =$ the same quantile from the \leftarrow standardized, if needed sample of data

example: Gaussian or Normal(0,1) distribution

```
d1 <- rnorm(1000)
layout(matrix(1:2, nrow = 1))
hist(d1, breaks = 50, xlim = c(-6, 6))
qqnorm(d1, pch = 19)qqline(d1)
```


Normal Q−Q Plot

example: Student's T-distribution with 6 d.f.

```
d1 \leftarrow rt(1000, df = 5)layout(matrix(1:2, nrow = 1))
hist(d1, breaks = 50, xlim = c(-6, 6))
qqnorm(d1, pch = 19)qqline(d1)
```


example: Truncated Gaussian

 $d1 \leftarrow \text{rnorm}(1000)$ $d1 \leftarrow \text{subset}(d1, \text{abs}(d1) \leftarrow 2)$ l ayout(matrix(1:2, nrow = 1)) hist(d1, breaks = 50 , xlim = $c(-6, 6)$) $qqnorm(d1, pch = 19)$ qqline(d1)

QQ-plots for our three fits from earlier

Model checking: possible solutions

- **Example 1** Global lack of fit, or general breakdown of model assumptions \blacktriangleright Residual analysis – QQ plots, residual plots against fitted values and predictors Adjusted variable plots - checking line wity in MLR
- **Effect of influential points and outliers**

 \triangleright Measure of leverage, influence, outlying-ness

Points can be isolated in three ways

- **E** Leverage point outlier in x , measured by hat matrix
- \blacksquare Outlier outlier in y, measured by residual
- **I** Influential point a point that largely affects β
	- ► Deletion influence; $|\hat{\beta} \hat{\beta}_{(-i)}|$
	- \triangleright Basically, a high-leverage outlier

We measure leverage (the "distance" of x*ⁱ* from the distribution of x) using

$$
h_{ii} = \mathbf{x}_i^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_i
$$

where h_{ii} is the (i, i) th entry of the hat matrix. Where, recall

$$
H = X(X^T X)^{-1} X^T
$$

Quantifying Leverage via the Hat Matrix $\frac{1}{2}$ = $\beta_0 + \beta_1 \times \frac{1}{2} \beta_2 \times 2 + \xi$ $\rho = 3$

Note that

$$
\sum_i h_{ii} \stackrel{\text{def}}{=} tr(\mathbf{H}) = p
$$

where *p* is the total number of independent predictors (i.e. βs) in your model (including a β_0 if you have one).

What counts as "big" leverage?

- Average leverage is p/n
- \blacksquare Typical rules of thumb are $2p/n$ or $3p/n$
- **Exercise endots can be useful as well**

Example Leverage plot with lung data

mlr \leq lm(disease \sim nutrition+ airqual + crowding + smoking, data=data) hii <- hatvalues(mlr) $x \leftarrow 1$: length(hii) qplot(x, hii, geom="point")

Outliers

- **E** When we refer to "outliers" we typically mean "points that don't have the same mean structure as the rest of the data"
- **E** Residuals give an idea of "outlying-ness", but we need to standardize somehow

We can use the fact that
$$
\sqrt{\text{Var}(\hat{\epsilon}_i)} = \sigma^2 (1 - h_{ii})
$$
...

Outliers

 $\left(\begin{array}{c} \cdot \\ \cdot \end{array}\right)$

The *standardized* residual is given by

$$
\hat{\epsilon}_i^* = \frac{\hat{\epsilon}_i}{\sqrt{\text{Var}(\hat{\epsilon}_i)}} = \frac{\hat{\epsilon}_i}{\hat{\sigma}\sqrt{(1-h_{ii})}}
$$

The *Studentized* residual is given by

$$
t_i = \frac{\hat{\epsilon}_{(-i)}}{\hat{\sigma}_{(-i)}\sqrt{(1-h_{ii})}} = \hat{\epsilon}_i^* \left(\frac{n-p}{n-p-\hat{\epsilon}_i^*^2}\right)^{1/2}
$$

Studentized residuals follow a *tn*−*p*−¹ distribution.

Influence

Intuitively, "influence" is a combination of outlying-ness and leverage. More specifically, we can measure the "deletion influence" of each observation: quantify how much $\hat{\boldsymbol{\beta}}$ changes if an observation is left out.

- $\|\hat{\boldsymbol{\beta}} \hat{\boldsymbol{\beta}}_{(-i)}\|$
- **Cook's distance is**

$$
D_i = \frac{(\hat{\beta} - \hat{\beta}_{(i)})^T (\mathbf{X}^T \mathbf{X})(\hat{\beta} - \hat{\beta}_{(i)})}{\rho \hat{\sigma}^2}
$$

=
$$
\frac{(\hat{\mathbf{y}} - \hat{\mathbf{y}}_{(-i)})^T (\hat{\mathbf{y}} - \hat{\mathbf{y}}_{(-i)})}{\rho \hat{\sigma}^2}
$$

=
$$
\frac{1}{\rho \hat{\sigma}^2} \frac{h_{ii}}{(1 - h_{ii})}
$$
 diveracy

Suppose you fit a linear model in R;

- **Example 1** hatvalues gives the diagonal elements of the hat matrix h_{ii} (leverages)
- **Exercise 1** rstandard gives the standardized residuals
- **Executed** rstudent gives the studentized residuals
- cooks.distance gives the Cook's distances

 $hated$ vilues $(n\mid r^2)$

Built-in R plots for lm objects

You can also use the plot.lm() function to look at leverage, outlying-ness, and influence all together. Recall that

$$
D_i = \frac{1}{p}\hat{\epsilon}_i^2 \frac{h_{ii}}{1 - h_{ii}}
$$

Today's big ideas

