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Today's Lecture

m Model selection vs. model checking

m Continue with model checking (regression diagnostics)



Model selection vs. model checking

Assume y|x = f(x) + ¢

= model selection focuses on how you construct f(-);

m model checking asks whether the € match the assumed form.



Model checking: possible challenges

Two major areas of concern

m Global lack of fit, or general breakdown of model assumptions
> Linearity

Unbiased, uncorrelated errors E(e|x) = E(e) =0

Constant variance Var(y|x) = Var(e|x) = o2

Independent errors

Normality of errors

vV vy vVvYyYy

m Effect of influential points and outliers



Model checking: possible solutions

m Global lack of fit, or general breakdown of model assumptions

» Residual analysis — QQ plots, residual plots against fitted
values and predictors
» Adjusted variable plots

m Effect of influential points and outliers
» Measure of leverage, influence, outlying-ness



Residual plots: verifying assumptions

Which assumptions are these plots evaluating?

residual

fitted

Assumption violations are not often this obvious
(but sometimes they are!).



QQ-plots for checking Normality of residuals

QQ plot defined

QQ-plot stands for quantile-quantile plot, and is used to compare
two distributions. If the two distributions are the same, then each
point (which represents a quantile from each distribution) should
lie along the y=x line.

For a single (x, y) point

m x = a specific quantile for the N(0,1) distribution

m y = the same quantile from the (standardized, if needed)
sample of data



example: Gaussian or Normal(0,1) distribution

dl <- rnorm(1000)

layout (matrix(1:2, nrow = 1))

hist(dl, breaks = 50, xlim = c(-6, 6))
qgnorm(dl, pch = 19)

qqline(d1)
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example: Student’'s T-distribution with 6 d.f.

dl <- rt(1000, df = 5)

layout (matrix(1:2, nrow = 1))

hist(dl, breaks = 50, xlim = c(-6, 6))
qgnorm(dl, pch = 19)

qqline(d1)
Histogram of d1 Normal Q-Q Plot
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example: Truncated Gaussian

d1l <- rnorm(1000)

dl <- subset(dl, abs(dl) < 2)

layout (matrix(1:2, nrow = 1))

hist(dl, breaks = 50, xlim = c(-6, 6))
qgnorm(dl, pch = 19)

qqline(dl)
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QQ-plots for our three fits from earlier

Sample Quantiles
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Model checking: possible solutions

m Global lack of fit, or general breakdown of model assumptions

» Residual analysis — QQ plots, residual plots against fitted
values and predictors
» Adjusted variable plots

m Effect of influential points and outliers
» Measure of leverage, influence, outlying-ness



Isolated points

Points can be isolated in three ways

m Leverage point — outlier in x, measured by hat matrix
m Qutlier — outlier in y, measured by residual
m Influential point — a point that largely affects 3

> Deletion influence; |3 — ,@(_,-)|
» Basically, a high-leverage outlier



Quantifying leverage

We measure leverage (the “distance” of x; from the distribution of
x) using
h; = X,T(XTX)ilx,'

where h;; is the (i, i)™ entry of the hat matrix. Where, recall

H=X(X"X)"1xT



Quantifying Leverage via the Hat Matrix

Note that

Zh,',' déf tr(H) =p

where p is the total number of independent predictors (i.e. 3s) in
your model (including a /3y if you have one).

What counts as “big" leverage?
m Average leverage is p/n

m Typical rules of thumb are 2p/n or 3p/n

m Leverage plots can be useful as well



Example Leverage plot with lung data

mlr <- Im(disease ~ nutrition+ airqual + crowding + smoking,
data=data)

hii <- hatvalues(mlr)

x <- 1:length(hii)

gplot(x, hii, geom="point")

«®
0.15
= . 4
< 0.10 o
. ° o . . .
.o . * o.. . o ® . d .. *
i ® .o hd .
0.05 o. o .. [ Nad o. . %o oo ..o. . .. o a.. .o
e o ’0..0...“ Lo o °® o.... % o
T 1 J T T
0 25 50 75 100



Outliers

m When we refer to “outliers” we typically mean “points that
don’t have the same mean structure as the rest of the data”

m Residuals give an idea of “outlying-ness”, but we need to
standardize somehow

m We can use the fact that Var(¢;) = o?(1 — h;) ...



Outliers

The standardized residual is given by

A~ N
A~k

T Var(@) a1 )

The Studentized residual is given by

& . 1/2
b — (1) o ("—P)
/A —hi) T \n—p—&?

Studentized residuals follow a t,_,_1 distribution.



Influence

Intuitively, “influence” is a combination of outlying-ness and
leverage. More specifically, we can measure the “deletion
influence” of each observation: quantify how much 3 changes if an
observation is left out.

m B - B il

m Cook’s distance is
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Handy R functions

Suppose you fit a linear model in R;

m hatvalues gives the diagonal elements of the hat matrix h;;
(leverages)

m rstandard gives the standardized residuals
m rstudent gives the studentized residuals

m cooks.distance gives the Cook’s distances



Built-in R plots for 1m objects
You can also use the plot.1m() function to look at leverage,
outlying-ness, and influence all together. Recall that

1 hj;
D — —¢2_""
I PE' 1— hj

plot(mlr, which = 5)

Standardized residuals

Residuals vs Leverage
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Today's big ideas

m Model checking

m Up next: model selection!



