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Module learning goals

At the end of this module you should be able to...

» simulate data from a parametric distribution.

» Design and implement a resampling simulation experiment to
test a hypotheS|s




What is simulation?

Definitions

» Broadly: “The technique of imitating the behaviour of some
situation or process (whether economic, military, mechanical,
etc.) by means of a suitably analogous situation or apparatus,
esp. for the purpose of study or personnel training.” (from
the OED)

> In science: Creating a model that imitates a physical or
biological process.

> In statistics: The generation of data from a model using rules
of probability.



Simple examples of simulations

» Drawing pseudo-random numbers from a probability
distribution (e.g. proposal distributions, ...).

» Generating data from a specified model (e.g. building a
template dataset to test a method, calculating statistical
power).

» Resampling existing data (e.g. permutation, bootstrap).



What simulations have you run?
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Basic simulation: Random number generation in R

rnorm(), rpois(), etc...

Built-in functions for simulating from parametric distributions.

A

N =
y <= rnorm(igg, mean = 10, sd = 5)

(p <- rpois(5, lambda = 25))
o e

<

## [1] 25 26 25 25 33

dnorm(x, mean=10, sd=5)
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Basic Simulation: Resampling data in R

sample ()
Base R function for sampling data (with or without replacement).

P

## [1] 25 26 25 25 33

f&v\f {l ( l 0)
sample (4, rjepla FALSE)

## [1] 25 26 33 25 25

sample(p, replace = TRUE)

## [1] 25 25@25@



Generating data from a model

A Simple Linear Regression model
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What is needed to simulate data (i.e. Y;) from this model?
» The X;: fixed quantities.
» Error distribution: e.g. ¢; % N(0, o2).

» Values for parameters: Sy, (1, o2.
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Generating data from Y; = By + 01X + ¢€;

require(ggplot2)

n <- 100; b0=4; bl=2; sigma=2
x <- runif(n, -10, 10)

eps <- rnorm(n, sd=sigma)

y <- b0 + bl*x + eps

## define parameters
## fiz the X's

## simulate the e_i's
## compute the y_i's

gplot(x, y, geom=c("point", "smooth"), method="1lm", se=FALSE)

20+

=10

-20 4




Example data: heights of mothers and daughters

Heights of n = 1375 mothers in the UK under the age of 65 and
one of their adult daughters over the age of 18 (collected and
organized during the period 1893-1898 by the famous statistician
Karl Pearson)

require(alr3)

data(heights)

head(heights)

## Mheight Dheight

## 1 59.7 55.1
## 2 58.2 56.5
## 3 60.6 56.0
## 4 60.7 56.8
## 5 61.8 56.0
## 6 55.5 57.9



Example data: heights of mothers and daughters

gplot (Mheight, Dheight, data=heights, col="red", alpha=.5) +
theme (legend.position="none")
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One way to draw inference about height association

Using normality assumptions and simple linear regression
Dheight; = By + 1 - Mheight; + €;

modl <- 1m(Dheight ~ Mheight, data = heights)
summary (mod1) $coefficients

## Estimate Std. Error t value Pr(>|tl)

## (Intercept) 29.9174 1.62247 18.44 2e-68
## Mheight 0.5417 0.02596 20.87(3.217e-84



Inference without Normality

What if normality assumptions are not valid?

m In large samples, 3 is approximately Normal even if the errors
are not

m In smaller samples, especially if Normality may not be
justified, the tests we've developed are not valid

m Permutation tests can be used to test hypotheses without
distributional assumptions

m Bootstrapping is a computational method for obtaining
empirical distributions for unknown parameters

m Note — bootstrapping can also give empirical distributions for
parameters whose true distribution is hard to derive



Permutation tests

Using a simulation-based permutation test

v

This can evaluate evidence for/against a null hypothesis.

» We are interested i(Hp : 51 = 0,)i.e. there is no relationship
between heights of mother and daughter.

v

The trick: we can easily simulate multiple sets of data that we
know have no association!

v

All we need is sample ().
—é

resampDheight <- sample(heights$Dheight, replace = FALSE)



Single permutation results

We can then fit this model
Dheight; = o + 1 - Mheight; + €;

where Dheight; are the permuted daughter heights.
This essentially “generates” data from the null model:

Dheight; = (o + 0 - Mdeight; + €;

mod2 <- 1lm(resampDheight ~ Mheight, data = heights)
summary (mod2) $coefficients

#i# Estimate Std. Error t value Pr(>ltl)

## (Intercept) 1.86194 34.6851 7.732e-190
## Mheight -0.0133 0.02979 -0.4463~ 6.554e-0



Permutation tests require repeated samples!

A permutation test algorithm

» Run original analysis (i.e. fit our linear model), stor@

» Foriinl2,.... N:
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» Permute the Ys.
» Re-run original analysis, storg

» Calculate fraction of the BP as or more “extreme” than Bl,
from our “null distribution” of 5is.



Hands-on exercise

» We have provided code for you to adapt and run a
permutation test.

» permutationLab.Rmd



Bootstrap

m The basic idea is that the observed data mimics the
underlying distribution, whatever that may be

m Drawing samples (with replacement) from the observed data
mimics drawing samples from the underlying distribution

m Recalculating regression parameters for the “new” samples
gives an idea of the distribution of regression coefficients

m Can use estimates from bootstrap analyses to compute
“bootstrap” confidence intervals.



Bootstrapping requires repeated samples!

A bootstrapping algorithm
» Run original analysis (i.e. fit our linear model), store B
» Foriinl1,2,...,N: X's c:~A.\(J-
» Resample thmeplacement.
» Re-run original analysis, store Bi').

» Compute a (1-a)% confidence interval where the bounds are
the (5) and (1 — 5) percentiles of the distribution of the Bg').
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Key differences between permutation tests and
bootstrapping

m Both are useful when parametric assumptions may not hold.
m Both are called “resampling” approaches to data analysis.

m Permutation tests permute the data; bootstrapping resamples
the data with replacement.

m Permutation tests are used for hypothesis testing;
bootstrapping characterizes uncertainty in your estimate.



