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Module learning goals

At the end of this module you should be able to...

I simulate data from a parametric distribution.

I Design and implement a resampling simulation experiment to
test a hypothesis.

I Run simulations in parallel, when appropriate.



What is simulation?

Definitions

I Broadly: “The technique of imitating the behaviour of some
situation or process (whether economic, military, mechanical,
etc.) by means of a suitably analogous situation or apparatus,
esp. for the purpose of study or personnel training.” (from
the OED)

I In science: Creating a model that imitates a physical or
biological process.

I In statistics: The generation of data from a model using rules
of probability.



Simple examples of simulations

I Drawing pseudo-random numbers from a probability
distribution (e.g. proposal distributions, ...).

I Generating data from a specified model (e.g. building a
template dataset to test a method, calculating statistical
power).

I Resampling existing data (e.g. permutation, bootstrap).



What simulations have you run?



Basic simulation: Random number generation in R

rnorm(), rpois(), etc...

Built-in functions for simulating from parametric distributions.

y <- rnorm(100, mean = 10, sd = 5)

(p <- rpois(5, lambda = 25))

## [1] 25 26 25 25 33
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Basic Simulation: Resampling data in R

sample()
Base R function for sampling data (with or without replacement).

p

## [1] 25 26 25 25 33

sample(p, replace = FALSE)

## [1] 25 26 33 25 25

sample(p, replace = TRUE)

## [1] 25 25 33 25 33



Generating data from a model

A Simple Linear Regression model

Yi = β0 + β1Xi + εi

What is needed to simulate data (i.e. Yi ) from this model?

I The Xi : fixed quantities.

I Error distribution: e.g. εi
iid∼ N(0, σ2).

I Values for parameters: β0, β1, σ2.



Generating data from Yi = β0 + β1Xi + εi

require(ggplot2)

n <- 100; b0=4; b1=2; sigma=2 ## define parameters

x <- runif(n, -10, 10) ## fix the X's

eps <- rnorm(n, sd=sigma) ## simulate the e_i's

y <- b0 + b1*x + eps ## compute the y_i's

qplot(x, y, geom=c("point", "smooth"), method="lm", se=FALSE)
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Example data: heights of mothers and daughters

Heights of n = 1375 mothers in the UK under the age of 65 and
one of their adult daughters over the age of 18 (collected and
organized during the period 1893–1898 by the famous statistician
Karl Pearson)

require(alr3)

data(heights)

head(heights)

## Mheight Dheight

## 1 59.7 55.1

## 2 58.2 56.5

## 3 60.6 56.0

## 4 60.7 56.8

## 5 61.8 56.0

## 6 55.5 57.9



Example data: heights of mothers and daughters

qplot(Mheight, Dheight, data=heights, col="red", alpha=.5) +

theme(legend.position="none")
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One way to draw inference about height association

Using normality assumptions and simple linear regression

Dheighti = β0 + β1 ·Mheighti + εi

mod1 <- lm(Dheight ~ Mheight, data = heights)

summary(mod1)$coefficients

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 29.9174 1.62247 18.44 5.212e-68

## Mheight 0.5417 0.02596 20.87 3.217e-84



Inference without Normality

What if normality assumptions are not valid?

� In large samples, β̂ is approximately Normal even if the errors
are not

� In smaller samples, especially if Normality may not be
justified, the tests we’ve developed are not valid

� Permutation tests can be used to test hypotheses without
distributional assumptions

� Bootstrapping is a computational method for obtaining
empirical distributions for unknown parameters

� Note – bootstrapping can also give empirical distributions for
parameters whose true distribution is hard to derive



Permutation tests

Using a simulation-based permutation test

I This can evaluate evidence for/against a null hypothesis.

I We are interested in H0 : β1 = 0, i.e. there is no relationship
between heights of mother and daughter.

I The trick: we can easily simulate multiple sets of data that we
know have no association!

I All we need is sample().

resampDheight <- sample(heights$Dheight, replace = FALSE)



Single permutation results

We can then fit this model

Dheight∗i = β0 + β1 ·Mheighti + εi

where Dheight∗i are the permuted daughter heights.
This essentially “generates” data from the null model:

Dheight∗i = β0 + 0 ·Mheighti + εi

mod2 <- lm(resampDheight ~ Mheight, data = heights)

summary(mod2)$coefficients

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 64.5815 1.86194 34.6851 7.732e-190

## Mheight -0.0133 0.02979 -0.4463 6.554e-01



Permutation tests require repeated samples!

A permutation test algorithm

I Run original analysis (i.e. fit our linear model), store β̂1.
I For i in 1, 2, . . . ,N:

I Permute the Y s.
I Re-run original analysis, store β̂

(i)
1 .

I Calculate fraction of the β̂
(i)
1 as or more “extreme” than β̂1,

from our “null distribution” of β̂1s.



Hands-on exercise

I We have provided code for you to adapt and run a
permutation test.

I permutationLab.Rmd

http://nickreich.github.io/methods2/assets/lectures/class14_permutationLab.Rmd


Bootstrap

� The basic idea is that the observed data mimics the
underlying distribution, whatever that may be

� Drawing samples (with replacement) from the observed data
mimics drawing samples from the underlying distribution

� Recalculating regression parameters for the “new” samples
gives an idea of the distribution of regression coefficients

� Can use estimates from bootstrap analyses to compute
“bootstrap” confidence intervals.



Bootstrapping requires repeated samples!

A bootstrapping algorithm

I Run original analysis (i.e. fit our linear model), store β̂1.
I For i in 1, 2, . . . ,N:

I Resample the Y s with replacement.
I Re-run original analysis, store β̂

(i)
1 .

I Compute a (1-α)% confidence interval where the bounds are

the (α2 ) and (1 − α
2 ) percentiles of the distribution of the β̂

(i)
1 .



Key differences between permutation tests and
bootstrapping

� Both are useful when parametric assumptions may not hold.

� Both are called “resampling” approaches to data analysis.

� Permutation tests permute the data; bootstrapping resamples
the data with replacement.

� Permutation tests are used for hypothesis testing;
bootstrapping characterizes uncertainty in your estimate.


