Multiple Linear Regression: Categorical Predictors

Author: Nicholas G Reich, Jeff Goldsmith

This material is part of the statsTeachR project

Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

Today's Lecture

- Sampling distribution of $\hat{oldsymbol{eta}}$
- Confidence intervals
- Hypothesis tests for individual coefficients
- Global tests

Circle of Life

Statistical inference

- We have LSEs β̂₀, β̂₁,...; we want to know what this tells us about β₀, β₁,....
- Two basic tools are confidence intervals and hypothesis tests
 - Confidence intervals provide a plausible range of values for the parameter of interest based on the observed data
 - Hypothesis tests ask how probable are the data we gathered under a null hypothesis about the data generating distribution

Motivation

How can we draw **inference** about each of these parameters and relationships that our model is encoding?

mlr1 <- lm(disease ~ airqual + crowding + nutrition + smoking, d
summary(mlr1)\$coef</pre>

##		Estimate	Std. Error	t value	Pr(> t)
##	(Intercept)	11.86333	2.578819	4.600	1.316e-05
##	airqual	0.25788	0.026799	9.623	1.165e-15
##	crowding	1.11113	0.102037	10.889	2.404e-18
##	nutrition	-0.03278	0.007954	-4.122	8.095e-05
##	smoking	4.96093	1.085292	4.571	1.475e-05

Motivation

- Can we say anything about whether the effect of airquality is "significant" after adjusting for other variables?
- Can we say whether adding airquality improves the fit of our model?
- Can we compare this model to a model with only crowding, nutrition and smoking?

Sampling distribution

If our usual assumptions are satisfied and $\epsilon \stackrel{iid}{\sim} N\left[0, \sigma^2\right]$ then

$$\hat{\boldsymbol{\beta}} \sim \mathsf{N}\left[\boldsymbol{\beta}, \sigma^{2} (\mathbf{X}^{T} \mathbf{X})^{-1}\right].$$
$$\hat{\beta}_{j} \sim \mathsf{N}\left[\boldsymbol{\beta}, \sigma^{2} (\mathbf{X}^{T} \mathbf{X})_{jj}^{-1}\right].$$

- This will be used later for inference.
- Even without Normal errors, asymptotic Normality of LSEs is possible under reasonable assumptions.

Sampling distribution

For real data we have to estimate σ^2 as well as β .

Recall our estimate of the error variance is

$$\hat{\sigma^2} = \frac{RSS}{n-p-1} = \frac{\sum_i (y_i - \hat{y}_i)^2}{n-p-1}$$

With Normally distributed errors, it can be shown that

$$(n-p-1)\frac{\hat{\sigma}^2}{\sigma^2}\sim \chi^2_{n-p-2}$$

Testing procedure

Calculate the probability of the observed data (or more extreme data) under a null hypothesis.

- Often $H_0: \beta_1 = 0$ and $H_a: \beta_1 \neq 0$
- Set type I error rate

 $\alpha = P(\text{falsely rejecting a true null hypothesis})$

- Calculate a test statistic assuming the null hypothesis is true
- Compute a p-value =

 $P(\text{As or more extreme test statistic}|H_0)$

• Reject or fail to reject H_0

Individual coefficients

For individual coefficients

We can use the test statistic

$$T = \frac{\hat{\beta}_j - \beta_j}{\widehat{se}(\hat{\beta}_j)} = \frac{\hat{\beta}_j - \beta_j}{\sqrt{\hat{\sigma}^2 (\mathbf{X}^T \mathbf{X})_{jj}^{-1}}} \sim t_{n-p-1}$$

 \blacksquare For a two-sided test of size $\alpha,$ we reject if

$$|T| > t_{1-\alpha/2, n-p-1}$$

The p-value gives $P(t_{n-p-1} > T_{obs}|H_0)$ Note that t is a symmetric distribution that converges to a Normal as n - p - 1 increases.

Back to the example

summarv(mlr1)

```
##
## Call:
## lm(formula = disease ~ airqual + crowding + nutrition + smoking,
## data = dat)
##
## Residuals:
     Min 10 Median 30 Max
##
## -8.130 -2.183 -0.572 1.941 13.326
##
## Coefficients:
##
       Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.86333 2.57882 4.60 1.3e-05 ***
## airqual 0.25788 0.02680 9.62 1.2e-15 ***
## crowding 1.11113 0.10204 10.89 < 2e-16 ***
## nutrition -0.03278 0.00795 -4.12 8.1e-05 ***
## smoking 4.96093 1.08529 4.57 1.5e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.64 on 94 degrees of freedom
## Multiple R-squared: 0.866, Adjusted R-squared: 0.861
## F-statistic: 152 on 4 and 94 DF, p-value: <2e-16
```

Individual coefficients: CIs

Alternatively, we can construct a confidence interval for β_j

• A confidence interval with coverage $(1 - \alpha)$ is given by

$$\beta_j \pm t_{1-\alpha/2,n-p-1}\widehat{se}(\hat{\beta}_j)$$

Assuming all the standard assumptions hold,

$$(1-\alpha) = P(LB < \beta_j < UB)$$

cbind(coef(mlr1), confint(mlr1))

##			2.5 %	97.5 %
##	(Intercept)	11.86333	6.74303	16.98364
##	airqual	0.25788	0.20467	0.31109
##	crowding	1.11113	0.90853	1.31372
##	nutrition	-0.03278	-0.04858	-0.01699
##	smoking	4.96093	2.80606	7.11580

Inference for linear combinations

Sometimes we are interested in making claims about $c^T \beta$ for some c.

• Define $H_0: c^T \beta = c^T \beta_0$ or $H_0: c^T \beta = 0$

We can use the test statistic

$$T = \frac{c^{T}\hat{\beta} - c^{T}\beta}{\hat{se}(c^{T}\hat{\beta})} = \frac{c^{T}\hat{\beta} - c^{T}\beta}{\sqrt{\hat{\sigma}^{2}c^{T}(\mathbf{X}^{T}\mathbf{X})^{-1}c^{T}}}$$

This test statistic is asymptotically Normally distributed
For a two-sided test of size α, we reject if

$$|T| > z_{1-\alpha/2}$$

Inference about multiple coefficients

Our model contains multiple parameters; often we want to perform multiple tests:

$$H_{01}: \beta_1 = 0$$

$$H_{02}: \beta_2 = 0$$

$$\vdots = \vdots$$

$$H_{0k}: \beta_k = 0$$

where each test has a size of $\boldsymbol{\alpha}$

• For any individual test, $P(\text{reject } H_{0i}|H_{0i}) = \alpha$

Inference about multiple coefficients

What about

 $P(\text{reject at least one } H_{0i}|\text{all } H_{0i}\text{are true}) = \alpha$

To calculate the FWER

- First note $P(\text{no rejections}|\text{all } H_{0i}\text{are true}) = (1 \alpha)^k$
- It follows that

FWER = $P(\text{at least one rejection}|\text{all } H_{0i}\text{are true})$ = $1 - (1 - \alpha)^k$

Family-wise error rate

$$\mathsf{FWER} = 1 - (1 - \alpha)^k$$

Addressing multiple comparisons

Three general approaches

- Do nothing in a reasonable way
 - Don't trust scientifically implausible results
 - Don't over-emphasize isolated findings
- Correct for multiple comparisons
 - ► Often, use the Bonferroni correction and use \(\alpha\)_i = \(\alpha\)/k for each test
 - \blacktriangleright Thanks to the Bonferroni inequality, this gives an overall $\mathit{FWER} \leq \alpha$

Use a global test

Global tests

Compare a smaller "null" model to a larger "alternative" model

- Smaller model must be nested in the larger model
- That is, the smaller model must be a special case of the larger model
- For both models, the *RSS* gives a general idea about how well the model is fitting
- In particular, something like

$$\frac{RSS_S - RSS_L}{RSS_L}$$

compares the relative RSS of the models

Nested models

• These models are nested:

Smaller = Regression of Y on
$$X_1$$

Larger = Regression of Y on X_1, X_2, X_3, X_4

These models are not:

Smaller = Regression of Y on
$$X_2$$

Larger = Regression of Y on X_1, X_3

Global F tests

Compute the test statistic

$$F_{obs} = \frac{(RSS_S - RSS_L)/(df_S - df_L)}{RSS_L/df_L}$$

- If H_0 (the null model) is true, then $F_{obs} \sim F_{df_S df_L, df_L}$
- Note $df_s = n p_S 1$ and $df_L = n p_L 1$
- We reject the null hypothesis if the p-value is above α , where

$$p-value = P(F_{df_S-df_L,df_L} > F_{obs})$$

There are a couple of important special cases for the F test

- The null model contains the intercept only
 - When people say ANOVA, this is often what they mean (although all F tests are based on an analysis of variance)
- The null model and the alternative model differ only by one term
 - Gives a way of testing for a single coefficient
 - Turns out to be equivalent to a two-sided *t*-test: $t_{df_i}^2 \sim F_{1,df_L}$

Lung data: multiple coefficients simultaneously

You can test multiple coefficients simultaneously using the F test

```
mlr_null <- lm(disease ~ nutrition, data = dat)
mlr1 <- lm(disease ~ nutrition + airqual + crowding + smoking, data = dat)
anova(mlr_null, mlr1)
## Analysis of Variance Table
##
## Model 1: disease ~ nutrition
## Model 2: disease ~ nutrition + airqual + crowding + smoking
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 97 9193
## 2 94 1248 3 7945 199 <2e-16 ***
## ----
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>
```

Lung data: single coefficient test

The F test is equivalent to the t test when there's only one parameter of interest

```
mlr null <- lm(disease ~ nutrition, data = dat)
mlr1 <- lm(disease ~ nutrition + airqual, data = dat)</pre>
anova(mlr_null, mlr1)
## Analysis of Variance Table
##
## Model 1: disease ~ nutrition
## Model 2: disease ~ nutrition + airqual
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 97 9193
## 2 96 5970 1 3223 51.8 1.3e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mlr1)$coef
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 37.6254 2.43946 15.42 9.946e-28
## nutrition -0.0347 0.01692 -2.05 4.307e-02
## airqual 0.3611 0.05016 7.20 1.347e-10
```

Today's Big Ideas

Inference for multiple linear regression models