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Today’s Lecture

� Sampling distribution of β̂

� Confidence intervals

� Hypothesis tests for individual coefficients

� Global tests
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Statistical inference

� We have LSEs β̂0, β̂1, . . .; we want to know what this tells us
about β0, β1, . . ..

� Two basic tools are confidence intervals and hypothesis tests
I Confidence intervals provide a plausible range of values for the

parameter of interest based on the observed data
I Hypothesis tests ask how probable are the data we gathered

under a null hypothesis about the data generating distribution



Motivation

How can we draw inference about each of these parameters and
relationships that our model is encoding?

mlr1 <- lm(disease ~ airqual + crowding + nutrition + smoking, data=dat)

summary(mlr1)$coef

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 11.86333 2.578819 4.600 1.316e-05

## airqual 0.25788 0.026799 9.623 1.165e-15

## crowding 1.11113 0.102037 10.889 2.404e-18

## nutrition -0.03278 0.007954 -4.122 8.095e-05

## smoking 4.96093 1.085292 4.571 1.475e-05



Motivation

� Can we say anything about whether the effect of airquality
is “significant” after adjusting for other variables?

� Can we say whether adding airquality improves the fit of
our model?

� Can we compare this model to a model with only crowding,
nutrition and smoking?



Sampling distribution

If our usual assumptions are satisfied and ε
iid∼ N

[
0, σ2

]
then

β̂ ∼ N
[
β, σ2(XTX)−1

]
.

β̂j ∼ N
[
β, σ2(XTX)−1

jj

]
.

� This will be used later for inference.

� Even without Normal errors, asymptotic Normality of LSEs is
possible under reasonable assumptions.



Sampling distribution

For real data we have to estimate σ2 as well as β.

� Recall our estimate of the error variance is

σ̂2 =
RSS

n − p − 1
=

∑
i (yi − ŷi )

2

n − p − 1

� With Normally distributed errors, it can be shown that

(n − p − 1)
σ̂2

σ2
∼ χ2

n−p−1



Testing procedure

Calculate the probability of the observed data (or more extreme
data) under a null hypothesis.

� Often H0 : β1 = 0 and Ha : β1 6= 0

� Set type I error rate
α = P(falsely rejecting a true null hypothesis)

� Calculate a test statistic assuming the null hypothesis is true

� Compute a p-value =

P(As or more extreme test statistic|H0)

� Reject or fail to reject H0



Individual coefficients

For individual coefficients

� We can use the test statistic

T =
β̂j − βj
ŝe(β̂j)

=
β̂j − βj√
σ̂2(XTX)−1

jj

∼ tn−p−1

� For a two-sided test of size α, we reject if

|T | > t1−α/2,n−p−1

� The p-value gives P(tn−p−1 > Tobs |H0)

Note that t is a symmetric distribution that converges to a Normal
as n − p − 1 increses.



Back to the example
summary(mlr1)

##

## Call:

## lm(formula = disease ~ airqual + crowding + nutrition + smoking,

## data = dat)

##

## Residuals:

## Min 1Q Median 3Q Max

## -8.130 -2.183 -0.572 1.941 13.326

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 11.86333 2.57882 4.60 1.3e-05 ***

## airqual 0.25788 0.02680 9.62 1.2e-15 ***

## crowding 1.11113 0.10204 10.89 < 2e-16 ***

## nutrition -0.03278 0.00795 -4.12 8.1e-05 ***

## smoking 4.96093 1.08529 4.57 1.5e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 3.64 on 94 degrees of freedom

## Multiple R-squared: 0.866, Adjusted R-squared: 0.861

## F-statistic: 152 on 4 and 94 DF, p-value: <2e-16



Individual coefficients: CIs

Alternatively, we can construct a confidence interval for βj

� A confidence interval with coverage (1− α) is given by

βj ± t1−α/2,n−p−1ŝe(β̂j)

� Assuming all the standard assumptions hold,

(1− α) = P(LB < βj < UB)



Back to the example

cbind(coef(mlr1), confint(mlr1))

## 2.5 % 97.5 %

## (Intercept) 11.86333 6.74303 16.98364

## airqual 0.25788 0.20467 0.31109

## crowding 1.11113 0.90853 1.31372

## nutrition -0.03278 -0.04858 -0.01699

## smoking 4.96093 2.80606 7.11580



Inference for linear combinations

Sometimes we are interested in making claims about cTβ for some
c .

� Define H0 : cTβ = cTβ0 or H0 : cTβ = 0

� We can use the test statistic

T =
cT β̂ − cTβ

ŝe(cT β̂)
=

cT β̂ − cTβ√
σ̂2cT (XTX)−1c

� This test statistic is asymptotically Normally distributed

� For a two-sided test of size α, we reject if

|T | > z1−α/2



Inference about multiple coefficients

Our model contains multiple parameters; often we want to perform
multiple tests:

H01 : β1 = 0

H02 : β2 = 0
... =

...

H0k : βk = 0

where each test has a size of α

� For any individual test, P(reject H0i |H0i ) = α



Inference about multiple coefficients

What about

P(reject at least one H0i |all H0iare true) = α



Family-wise error rate

To calculate the FWER

� First note P(no rejections|all H0iare true) = (1− α)k

� It follows that

FWER = P(at least one rejection|all H0iare true)

= 1− (1− α)k



Family-wise error rate

FWER = 1− (1− α)k

alpha <- 0.05

k <- 1:100

FWER <- 1 - (1 - alpha)^k

qplot(k, FWER, geom = "line") + geom_hline(yintercept = 1, lty = 2)
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Addressing multiple comparisons

Three general approaches

� Do nothing in a reasonable way
I Don’t trust scientifically implausible results
I Don’t over-emphasize isolated findings

� Correct for multiple comparisons
I Often, use the Bonferroni correction and use αi = α/k for

each test
I Thanks to the Bonferroni inequality, this gives an overall

FWER ≤ α
� Use a global test



Global tests

Compare a smaller “null” model to a larger “alternative” model

� Smaller model must be nested in the larger model

� That is, the smaller model must be a special case of the larger
model

� For both models, the RSS gives a general idea about how well
the model is fitting

� In particular, something like

RSSS − RSSL
RSSL

compares the relative RSS of the models



Nested models

� These models are nested:

Smaller = Regression of Y on X1

Larger = Regression of Y on X1,X2,X3,X4

� These models are not:

Smaller = Regression of Y on X2

Larger = Regression of Y on X1,X3



Global F tests

� Compute the test statistic

Fobs =
(RSSS − RSSL)/(dfS − dfL)

RSSL/dfL

� If H0 (the null model) is true, then Fobs ∼ FdfS−dfL,dfL

� Note dfs = n − pS − 1 and dfL = n − pL − 1

� We reject the null hypothesis if the p-value is above α, where

p-value = P(FdfS−dfL,dfL > Fobs)



Global F tests

There are a couple of important special cases for the F test

� The null model contains the intercept only
I When people say ANOVA, this is often what they mean

(although all F tests are based on an analysis of variance)

� The null model and the alternative model differ only by one
term
I Gives a way of testing for a single coefficient
I Turns out to be equivalent to a two-sided t-test: t2dfL ∼ F1,dfL



Lung data: multiple coefficients simultaneously

You can test multiple coefficients simultaneously using the F test

mlr_null <- lm(disease ~ nutrition, data = dat)

mlr1 <- lm(disease ~ nutrition + airqual + crowding + smoking, data = dat)

anova(mlr_null, mlr1)

## Analysis of Variance Table

##

## Model 1: disease ~ nutrition

## Model 2: disease ~ nutrition + airqual + crowding + smoking

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 97 9193

## 2 94 1248 3 7945 199 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



Lung data: single coefficient test
The F test is equivalent to the t test when there’s only one
parameter of interest

mlr_null <- lm(disease ~ nutrition, data = dat)

mlr1 <- lm(disease ~ nutrition + airqual, data = dat)

anova(mlr_null, mlr1)

## Analysis of Variance Table

##

## Model 1: disease ~ nutrition

## Model 2: disease ~ nutrition + airqual

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 97 9193

## 2 96 5970 1 3223 51.8 1.3e-10 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(mlr1)$coef

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 37.6254 2.43946 15.42 9.946e-28

## nutrition -0.0347 0.01692 -2.05 4.307e-02

## airqual 0.3611 0.05016 7.20 1.347e-10



Today’s Big Ideas

� Inference for multiple linear regression models


