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Recap: Least squares for MLR

As in simple linear regression, we want to find the β that
minimizes the residual sum of squares.

RSS(β) =
∑
i

ε2i = εT ε

After taking the derivative, setting equal to zero, we obtain:

β̂ = (XTX)−1XTy



Hat matrix

H = X(XTX)−1XT

Some properties of the hat matrix:

� It is a projection matrix: HH = H

� It is symmetric: HT = H

� The residuals are ε̂ = (I−H)y

� The inner product of (I−H)y and Hy is zero (predicted
values and residuals are uncorrelated).



Projection space interpretation

The hat matrix projects y onto the column space of X.
Alternatively, minimizing the RSS(β) is equivalent to minimizing
the Euclidean distance between y and the column space of X.



Lung Data Example (con’t from previous clas)

mlr2 <- lm(disease ~ crowding + education + airqual,

data=dat, x=TRUE, y=TRUE)

coef(mlr2)

## (Intercept) crowding education airqual

## -7.7505 1.3128 1.4377 0.2881

X = mlr2$x

y = mlr2$y

(betaHat = solve( t(X) %*% X) %*% t(X) %*% y )

## [,1]

## (Intercept) -7.7505

## crowding 1.3128

## education 1.4377

## airqual 0.2881



Key points so far

� Our model is y = Xβ + ε with ε ∼ (0, σ2I)

� The design matrix X contains the terms included in the model

� We have least squares solutions under some conditions



Least squares estimates

β̂ =
(
XTX

)−1
XTy

A condition on
(
XTX

)
� If

(
XTX

)
is singular, there are infinitely many least squares

solutions, making β̂ non-identifiable (can’t choose between
different solutions)



Non-identifiability

� Can happen if X is not of full rank, i.e. the columns of X are
linearly dependent (for example, including weight in Kg and lb
as predictors)

� Can happen if there are fewer data points than terms in X:
n < p (having 100 predictors and only 50 observations)

� Generally, the p × p matrix
(
XTX

)
is invertible if and only if

it has rank p.



Infinite solutions

Suppose I fit a model yi = β0 + β1xi1 + εi .

� I have estimates β̂0 = 1, β̂1 = 2

� I put in a new variable x2 = x1

� My new model is yi = β0 + β1xi1 + β2xi2 + εi
� Possible least squares estimates that are equivalent to my first

model:
I β̂0 = 1, β̂1 = 2, β̂2 = 0
I β̂0 = 1, β̂1 = 0, β̂2 = 2
I β̂0 = 1, β̂1 = 1002, β̂2 = −1000
I . . .



Non-identifiablity

� Often due to data coding errors (variable duplication, scale
changes)

� Pretty easy to detect and resolve

� Can be addressed using penalties (might come up much later)

� A bigger problem is near-unidentifiability (collinearity)



Causes of collinearity

� Arises when variables are highly correlated, but not exact
duplicates

� Commonly arises in data (perfect correlation is usually there
by mistake)

� Might exist between several variables, i.e. a linear
combination of several variables exists in the data

� A variety of tools exist (correlation analyses, multiple R2,
eigen decompositions)



Effects of collinearity

Suppose I fit a model yi = β0 + β1xi1 + εi .

� I have estimates β̂0 = 1, β̂1 = 2

� I put in a new variable x2 = x1 + error , where error is pretty
small

� My new model is yi = β0 + β1xi1 + β2xi2 + εi
� Possible least squares estimates that are nearly equivalent to

my first model:
I β̂0 = 1, β̂1 = 2, β̂2 = 0
I β̂0 = 1, β̂1 = 0, β̂2 = 2
I β̂0 = 1, β̂1 = 1002, β̂2 = −1000
I . . .

� A unique solution exists, but it is hard to find



Effects of collinearity

� Collinearity results in a “flat” RSS

� Makes identifying a unique solution difficult

� Dramatically inflates the variance of LSEs



Non-identifiability example: lung data

mlr3 <- lm(disease ~ airqual, data=dat)

coef(mlr3)

## (Intercept) airqual

## 35.4445 0.3537

dat$x2 <- dat$airqual/100

mlr4 <- lm(disease ~ airqual + x2, data=dat, x=TRUE)

coef(mlr4)

## (Intercept) airqual x2

## 35.4445 0.3537 NA

X = mlr4$x

solve( t(X) %*% X)

## Error: system is computationally singular:

reciprocal condition number = 3.57906e-20



Collinearity example: lung data

dat$crowd2 <- dat$crowding + rnorm(nrow(dat), sd=.1)

mlr5 <- lm(disease ~ crowding, data=dat)

summary(mlr5)$coef

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 12.992 3.4750 3.739 3.130e-04

## crowding 1.509 0.1394 10.826 2.232e-18

mlr6 <- lm(disease ~ crowding + crowd2, data=dat)

summary(mlr6)$coef

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 12.642 3.518 3.5937 0.0005166

## crowding -4.015 7.719 -0.5202 0.6041320

## crowd2 5.537 7.736 0.7158 0.4758717



Some take away messages

� Collinearity can (and does) happen, so be careful

� Often contributes to the problem of variable selection, which
we’ll touch on later



Categorical predictors

� Assume X is a categorical / nominal / factor variable with k
levels

� With only one categorical X , we have classic one-way ANOVA
design

� Can’t use a single predictor with levels 1, 2, . . . ,K – this has
the wrong interpretation

� Need to create indicator or dummy variables



Indicator variables

� Choose one group as the baseline

� Create 0/1 terms to include in the model x1, x2, . . . xk=1

� Pose the model

yi = β0 + β1xi1 + . . .+ βk−1xi ,k−1 + εi

and estimate parameters using least squares

� Note distinction between predictors and terms



Categorical predictor design matrix

Which of the following is a “correct” design matrix for a
categorical predictor with 3 levels?

X1 =
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ANOVA model interpretation

Using the model yi = β0 + β1xi1 + . . .+ βk−1xi ,k−1 + εi , interpret
β0 =

β1 =



Equivalent model

Define the model yi = β1xi1 + . . .+ βkxi ,k + εi where there are
indicators for each possible group
β1 =

β2 =



Categorical predictor example: lung data

require(ggplot2)

qplot(factor(education), disease, geom="boxplot", data=dat) + theme_bw()
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Categorical predictor example: lung data

mlr7 <- lm(disease ~ factor(education), data=dat)

summary(mlr7)$coef

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 33.00 4.913 6.7173 1.689e-09

## factor(education)6 -1.00 7.768 -0.1287 8.979e-01

## factor(education)7 17.33 6.017 2.8808 4.969e-03

## factor(education)8 11.18 5.329 2.0975 3.879e-02

## factor(education)9 15.50 5.353 2.8953 4.765e-03

## factor(education)10 20.38 5.188 3.9289 1.683e-04

## factor(education)11 20.53 5.382 3.8155 2.505e-04

## factor(education)12 22.20 5.601 3.9633 1.489e-04

## factor(education)13 18.67 6.948 2.6868 8.609e-03

## factor(education)14 19.00 9.825 1.9338 5.632e-02



Categorical predictor example: lung data

mlr8 <- lm(disease ~ factor(education) - 1, data=dat)

summary(mlr8)$coef

## Estimate Std. Error t value Pr(>|t|)

## factor(education)5 33.00 4.913 6.717 1.689e-09

## factor(education)6 32.00 6.017 5.318 7.716e-07

## factor(education)7 50.33 3.474 14.489 3.846e-25

## factor(education)8 44.18 2.064 21.406 7.303e-37

## factor(education)9 48.50 2.127 22.799 6.282e-39

## factor(education)10 53.38 1.669 31.991 1.359e-50

## factor(education)11 53.53 2.197 24.366 3.801e-41

## factor(education)12 55.20 2.691 20.514 1.713e-35

## factor(education)13 51.67 4.913 10.517 2.758e-17

## factor(education)14 52.00 8.509 6.111 2.561e-08



Today’s big ideas

� Multiple linear regression models, projections, collinearity,
categorical variables


