Multiple Linear Regression: Collinearity and Categories

Author: Nicholas G Reich, Jeff Goldsmith

This material is part of the statsTeachR project

Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

Recap: Least squares for MLR

As in simple linear regression, we want to find the β that minimizes the residual sum of squares.

$$RSS(\beta) = \sum_{i} \epsilon_{i}^{2} = \epsilon^{T} \epsilon$$

After taking the derivative, setting equal to zero, we obtain:

$$\hat{oldsymbol{eta}} = (\mathbf{X}^{ op} \mathbf{X})^{-1} \mathbf{X}^{ op} \mathbf{y}$$

Hat matrix

$$\mathbf{H} = \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$$

Some properties of the hat matrix:

- It is a projection matrix: $\mathbf{H}\mathbf{H} = \mathbf{H}$
- It is symmetric: $\mathbf{H}^T = \mathbf{H}$
- The residuals are $\hat{\epsilon} = (\mathbf{I} \mathbf{H})\mathbf{y}$
- The inner product of (I H)y and Hy is zero (predicted values and residuals are uncorrelated).

Projection space interpretation

The hat matrix projects \mathbf{y} onto the column space of \mathbf{X} . Alternatively, minimizing the $RSS(\beta)$ is equivalent to minimizing the Euclidean distance between \mathbf{y} and the column space of \mathbf{X} . Lung Data Example (con't from previous clas)

(Intercept) crowding education airqual ## -7.7505 1.3128 1.4377 0.2881

X = mlr2\$x y = mlr2\$y (betaHat = solve(t(X) %*% X) %*% t(X) %*% y)

[,1]
(Intercept) -7.7505
crowding 1.3128
education 1.4377
airqual 0.2881

Key points so far

- Our model is $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ with $\boldsymbol{\epsilon} \sim (\mathbf{0}, \sigma^2 \mathbf{I})$
- The design matrix **X** contains the terms included in the model
- We have least squares solutions under some conditions

Least squares estimates

$$\hat{\boldsymbol{eta}} = \left(\mathbf{X}^{\mathsf{T}} \mathbf{X}
ight)^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

- A condition on $(\mathbf{X}^{\mathsf{T}}\mathbf{X})$
 - If (**X**^T**X**) is singular, there are infinitely many least squares solutions, making β̂ non-identifiable (can't choose between different solutions)

Non-identifiability

- Can happen if X is not of full rank, i.e. the columns of X are linearly dependent (for example, including weight in Kg and lb as predictors)
- Can happen if there are fewer data points than terms in X:
 n
- Generally, the $p \times p$ matrix $(\mathbf{X}^T \mathbf{X})$ is invertible if and only if it has rank p.

Infinite solutions

Suppose I fit a model $y_i = \beta_0 + \beta_1 x_{i1} + \epsilon_i$.

- I have estimates $\hat{\beta}_0 = 1, \hat{\beta}_1 = 2$
- I put in a new variable $x_2 = x_1$
- My new model is $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$

Possible least squares estimates that are equivalent to my first model:

$$\hat{\beta}_0 = 1, \hat{\beta}_1 = 2, \hat{\beta}_2 = 0
\hat{\beta}_0 = 1, \hat{\beta}_1 = 0, \hat{\beta}_2 = 2
\hat{\beta}_0 = 1, \hat{\beta}_1 = 1002, \hat{\beta}_2 = -1000
\dots$$

Non-identifiablity

- Often due to data coding errors (variable duplication, scale changes)
- Pretty easy to detect and resolve
- Can be addressed using *penalties* (might come up much later)
- A bigger problem is near-unidentifiability (collinearity)

Causes of collinearity

- Arises when variables are highly correlated, but not exact duplicates
- Commonly arises in data (perfect correlation is usually there by mistake)
- Might exist between several variables, i.e. a linear combination of several variables exists in the data
- A variety of tools exist (correlation analyses, multiple R², eigen decompositions)

Effects of collinearity

Suppose I fit a model $y_i = \beta_0 + \beta_1 x_{i1} + \epsilon_i$.

- I have estimates $\hat{\beta}_0 = 1, \hat{\beta}_1 = 2$
- I put in a new variable $x_2 = x_1 + error$, where *error* is pretty small
- My new model is $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$
- Possible least squares estimates that are nearly equivalent to my first model:

$$\hat{\beta}_0 = 1, \hat{\beta}_1 = 2, \hat{\beta}_2 = 0 \hat{\beta}_0 = 1, \hat{\beta}_1 = 0, \hat{\beta}_2 = 2 \hat{\beta}_0 = 1, \hat{\beta}_1 = 1002, \hat{\beta}_2 = -1000 \dots$$

A unique solution exists, but it is hard to find

Effects of collinearity

- Collinearity results in a "flat" RSS
- Makes identifying a unique solution difficult
- Dramatically inflates the variance of LSEs

Non-identifiability example: lung data

```
mlr3 <- lm(disease ~ airqual, data=dat)
coef(mlr3)</pre>
```

(Intercept) airqual ## 35.4445 0.3537

```
dat$x2 <- dat$airqual/100
mlr4 <- lm(disease ~ airqual + x2, data=dat, x=TRUE)
coef(mlr4)</pre>
```

```
## (Intercept) airqual x2
## 35.4445 0.3537 NA
```

```
X = mlr4$x
solve( t(X) %*% X)
```

Error: system is computationally singular: reciprocal condition number = 3.57906e-20

Collinearity example: lung data

dat\$crowd2 <- dat\$crowding + rnorm(nrow(dat), sd=.1)
mlr5 <- lm(disease ~ crowding, data=dat)
summary(mlr5)\$coef</pre>

 ##
 Estimate Std. Error t value Pr(>|t|)

 ## (Intercept)
 12.992
 3.4750
 3.739
 3.130e-04

 ## crowding
 1.509
 0.1394
 10.826
 2.232e-18

mlr6 <- lm(disease ~ crowding + crowd2, data=dat)
summary(mlr6)\$coef</pre>

##		Estimate	Std.	Error	t value	Pr(> t)
##	(Intercept)	12.642		3.518	3.5937	0.0005166
##	crowding	-4.015		7.719	-0.5202	0.6041320
##	crowd2	5.537		7.736	0.7158	0.4758717

Some take away messages

- Collinearity can (and does) happen, so be careful
- Often contributes to the problem of variable selection, which we'll touch on later

Categorical predictors

- Assume X is a categorical / nominal / factor variable with k levels
- With only one categorical X, we have classic one-way ANOVA design
- Can't use a single predictor with levels 1, 2, ..., *K* this has the wrong interpretation
- Need to create *indicator* or *dummy* variables

Indicator variables

- Choose one group as the baseline
- Create 0/1 terms to include in the model $x_1, x_2, \ldots x_{k=1}$
- Pose the model

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_{k-1} x_{i,k-1} + \epsilon_i$$

and estimate parameters using least squares

Note distinction between predictors and terms

Categorical predictor design matrix

Which of the following is a "correct" design matrix for a categorical predictor with 3 levels?

	Γ1	1	0	0]		Γ1	0	0 -	1	Γ1	0	ر ہ
	: 1	: : 1	: : 0	: 0		· · · 1	: : 0	: : 0		: : 1	: : 0	: 0
	1	0	1	0		1	1	0		0	1	0
$\textbf{X}_1 =$:	÷	÷	:	or ${f X}_2 =$:	÷	÷	or $\mathbf{X}_3 =$		÷	÷
	1	0	1	0		1	1	0		0	1	0
	1	0	0	1		1	0	1		0	0	1
	:	:	:	:		:	:	:		:	:	:
				:				1				:
	[1	0	0	ŢŢ		L 1	0	1 _	J	L 0	0	ŢŢ

ANOVA model interpretation

Using the model $y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_{k-1} x_{i,k-1} + \epsilon_i$, interpret $\beta_0 =$

 $\beta_1 =$

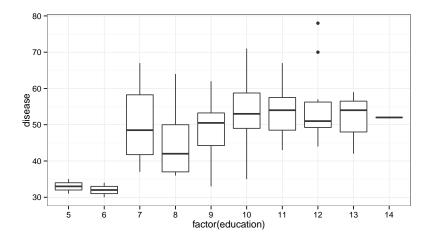
Equivalent model

Define the model $y_i = \beta_1 x_{i1} + \ldots + \beta_k x_{i,k} + \epsilon_i$ where there are indicators for each possible group $\beta_1 =$

$$\beta_2 =$$

Categorical predictor example: lung data

```
require(ggplot2)
qplot(factor(education), disease, geom="boxplot", data=dat)
```



Categorical predictor example: lung data

mlr7 <- lm(disease ~ factor(education), data=dat)
summary(mlr7)\$coef</pre>

##	Estimate	Std. Error	t value	Pr(> t)
## (Intercept)	33.00	4.913	6.7173	1.689e-09
<pre>## factor(education)6</pre>	-1.00	7.768	-0.1287	8.979e-01
<pre>## factor(education)7</pre>	17.33	6.017	2.8808	4.969e-03
<pre>## factor(education)8</pre>	11.18	5.329	2.0975	3.879e-02
<pre>## factor(education)9</pre>	15.50	5.353	2.8953	4.765e-03
<pre>## factor(education)10</pre>	20.38	5.188	3.9289	1.683e-04
<pre>## factor(education)11</pre>	20.53	5.382	3.8155	2.505e-04
<pre>## factor(education)12</pre>	22.20	5.601	3.9633	1.489e-04
<pre>## factor(education)13</pre>	18.67	6.948	2.6868	8.609e-03
<pre>## factor(education)14</pre>	19.00	9.825	1.9338	5.632e-02

Categorical predictor example: lung data

mlr8 <- lm(disease ~ factor(education) - 1, data=dat)
summary(mlr8)\$coef</pre>

##	Estimate Sto	l. Error	t value	Pr(> t)
<pre>## factor(education)5</pre>	33.00	4.913	6.717	1.689e-09
<pre>## factor(education)6</pre>	32.00	6.017	5.318	7.716e-07
<pre>## factor(education)7</pre>	50.33	3.474	14.489	3.846e-25
<pre>## factor(education)8</pre>	44.18	2.064	21.406	7.303e-37
<pre>## factor(education)9</pre>	48.50	2.127	22.799	6.282e-39
<pre>## factor(education)10</pre>	53.38	1.669	31.991	1.359e-50
<pre>## factor(education)11</pre>	53.53	2.197	24.366	3.801e-41
<pre>## factor(education)12</pre>	55.20	2.691	20.514	1.713e-35
<pre>## factor(education)13</pre>	51.67	4.913	10.517	2.758e-17
<pre>## factor(education)14</pre>	52.00	8.509	6.111	2.561e-08

Today's big ideas

 Multiple linear regression models, projections, collinearity, categorical variables