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Today's Lecture

m Types of missing data
m Ways to describe missing data

m Multiple imputation
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Best practices

Hard to argue with an approach that does the following:

m quantify the completeness of covariate data
m present and discuss patterns of or reasons for missing data

m provide details about your approach for handling missing data
in the analysis

Proposed guidelines for reporting missing covariate data (Burton and Altman 2004)



Quantifying missing data

library(Hmisc)
getHdata(titanic)
colnames(titanic)

## [1] "pclass" "survived" "name" "age" "embarked"
## [6] "home.dest" "room" "ticket" "boat" "sex"

na.pattern(titanic)

## pattern
## 0000000000 0000000010 0000010000 0000010010 0000100000 0000100010
## 279 315 6 27 4 2

## 0001000000 0001000010 0001010000 0001010010 0001100010 0001110010
## 51 95 7 41 8 478



Quantifying missing data

library(Amelia)
missmap(titanic)

Missingness Map
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Quantifying missing data

What percentage of each variable's observations are missing?

t(t(apply(titanic, MAR=2, FUN = function(x) round(sum(is.na(x))/length(x)*100))

## [,1]
## pclass 0
## survived 0
## name 0
## age 52

## embarked 37
## home.dest 43

## room 0
## ticket 0
## boat 74

## sex 0



Formal Missing Data Classifications

Missing Completely at Random (MCAR)

m No data, observed or unobserved, are related to missingness.

Missing at Random (MAR)
m No unobserved data are related to missingness, but
missingness may depend on observed data.
Missing Not at Random (MNAR) or unignorable missingness

m Missingness relationship cannot be simplified: it depends on
unobserved datal



What kind of missingness did the titanic dataset have?

Missing Completely at Random (MCAR)

m No data, observed or unobserved, are related to missingness.

Missing at Random (MAR)
m No unobserved data are related to missingness, but
missingness may depend on observed data.
Missing Not at Random (MNAR) or unignorable missingness

m Missingness relationship cannot be simplified: it depends on
unobserved datal



What kind of missingness did the titanic dataset have?
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What kind of missingness did the titanic dataset have?
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Example code used to create the last graphic

Harder than it should be, it felt like... Code adapted from this
page.

t3 <- titanic %>%
group_by(pclass, age_mis) %>%
summarise (count=n()) %>%
mutate (perc=count/sum(count))

ggplot (t3, aes(x = pclass, y = perc*100, fill = age_mis)) +
geom_bar(stat="identity", width = 0.7) +
labs(x = "class", y = "percent", fill = "missing") +

theme_minimal (base_size = 14)


http://stackoverflow.com/questions/24776200/ggplot-replace-count-with-percentage-in-geom-bar
http://stackoverflow.com/questions/24776200/ggplot-replace-count-with-percentage-in-geom-bar

Testing for the different types of data
Tests about the type of data you have

m MAR vs. MNAR: Not a definitive test here. Best option is to
use your domain-specific knowledge about the data.

m MCAR vs. MAR: Little's test can weigh evidence for/against
these two settings.

Little’'s Hy: The data is MCAR
Low p-values suggest that the data are MAR; high p-values
suggest they are MCAR.

test <- BaylorEdPsych::LittleMCAR(titanic[,c("pclass", "survived", "age", "sex"

## this could take a while
test$p.value

## [1]1 O



Types of analyses for missing data

Analysis strategies (in rough order of desirability, low to high)

m MCAR only: Complete case a.k.a. “listwise deletion”

m Ad-hoc methods (e.g. mean imputation)

Weighting methods

m MAR: Likelihood-based approaches (e.g. EM algorithm)
s MAR: Multiple Imputation (many flavors)

m MAR: Bayesian methods



Multiple imputation

General approach
m For each missingness pattern, a model is built to use the
available covariates to estimate the missing covariates.

m Random samples are taken from the predictive distribution to
create multiple “complete” datasets.

m Typically, 10-15 datasets is seen as being sufficient.

m Coefficient and SE estimates are combined across datasets.



Multiple imputation: example
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Multiple imputation: example

observation (by row)

imputed data for transferr.sat
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Multiple imputation results

Regression coefficients from five imputed data sets

Data Estimated ba b] b2 bg b.J bs
set parameter
1 Coefficient -11.535  -2.780  1.029 -.031 -0.359 0572
Variance 43.204 3323 0.013 0.013 0.013  0.012
2 Coefticient -11.501  -4.149 1.040 -0.093 -0.583 0.876
Variance 40.488 2680 0.010 0.009 0.009  0.007
3 Coefficient -10.141  -5.038 0.766 0.123 -0.252 0.625
Variance. 42.055 3301  0.010 0.010 0.010  0.009
4 Coefficient -11.533  -6.920 0.870 0.084 -0.458 0.815
Variance 28.751 1.796  0.081 0.007 0.007  0.007
5  Coefficient -14.586  -1.115 0.718 0.050 -0.373 0814
Variance 32856 2362  0.009 0.009 0.009  0.008
Mean b; -11.859  -4.000 0.885 0.027 -0.405 0.740
Mean Var () 37471 2692 0025  0.010 0.010  0.009
Var. of b, (B) 2682 4859 0.022 0.008 0.015 0018
T
\/1_ 40.69  8.523 0.051 0.020 0.028  0.031
; 6379 2919 0.226 0.141 0.167  0.176
-1.859  -1.370 3.916%  0.191 2.425%  4.204%

*¥p<.05 “Var.” refers to the squared standard error of the coefficient.
DC Howell, Treatment of Missing Data — Part Il.


https://www.uvm.edu/~dhowell/StatPages/More_Stuff/Missing_Data/Missing-Part-Two.html

Multiple imputation results
The final estimated sampling distribution for each 5 is an average
of the sampling distributions from each imputed dataset.

sampling distributions for imputed datasets
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Multiple imputation software

There are two commonly used implementations of multiple
imputation in R:

m MICE: http://www.stefvanbuuren.nl/mi/

m To be used together: Amelia (runs the MI) and Zelig (fits
models to, among other things, M| datasets):
http://gking.harvard.edu/amelia and http://zeligproject.org/


http://www.stefvanbuuren.nl/mi/
http://gking.harvard.edu/amelia
http://zeligproject.org/

Multiple imputation for titanic data

t2 <- titanic[,c("pclass", "survived", "age", "sex")]
imp_titanic <- amelia(x = t2, m = 10, noms=c("sex", "pclass"))
missmap (imp_titanic$imputations$imp1)
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Multiple imputation for titanic data

plot(imp_titanic, which.vars = "age")

Observed and Imputed values of age
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Multiple imputation for titanic data

t2 <- t2[complete.cases(t2),] ## only include complete cases
m_full <- glm(survived~sex+age+pclass, data=t2, family=binomial)
summary (m_full) $coef

#i# Estimate Std. Error z value Pr(>lzl)
## (Intercept) 4.52216290 0.471007573 9.601041 7.914121e-22
## sexmale -3.08670894 0.241062738 -12.804588 1.545447e-37
## age -0.04930858 0.008732002 -5.646882 1.633840e-08
## pclass2nd -1.49522913 0.281986441 -5.302486 1.142363e-07
## pclass3rd -2.84127142 0.338897350 -8.383870 5.121522e-17

library(Zelig)
m_imp <- zelig(survived~sex+agetpclass, model="logit", data=imp_titanic)

summary (m_imp)

## Model: Combined Imputations

#it Estimate Std.Error z value Pr(>|zl|)

## (Intercept) 4.09799 0.456939 8.968 0.000e+00 **x*
## sexmale -2.53298 0.174426 -14.522 0.000e+00 **x*
## age -0.05106 0.008842 -5.775 7.687e-09 **x*

## pclass2nd -1.46677 0.247084 -5.936 2.915e-09 *x**

## pclass3rd -2.97530 0.252526 -11.782 0.000e+00 **x*
B4



Best practices

Hard to argue with an approach that does the following:

m quantify the completeness of covariate data
m present and discuss patterns of or reasons for missing data

m provide details about your approach for handling missing data

Proposed guidelines for reporting missing covariate data (Burton and Altman 2004)



Bonus: ROC for Titanic data

library (ROCR)
pred <- prediction(predict(m_full, type="response"), t2$survived)
perf <- performance(pred, measure = "tpr", x.measure = "fpr")
plot (perf)
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