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Today's Lecture

m Logistic regression

[Note: more on logistic regression can be found in Kaplan, Chapter
16 and the Openlntro Statistics textbook, Chapter 8. These slides
are based, in part, on the slides from Openlntro.]



Regression so far ...

At this point we have covered:

» Simple linear regression

» Relationship between numerical response and a numerical or
categorical predictor

> Multiple regression
» Relationship between numerical response and multiple

numerical and/or categorical predictors

What we haven't covered is what to do when the response is not
continuous (i.e. categorical, count data, etc.)



Example - Birdkeeping and Lung Cancer

A 1972 - 1981 health survey in The Hague, Netherlands,
discovered an association between keeping pet birds and increased
risk of lung cancer. To investigate birdkeeping as a risk factor,
researchers conducted a case-control study of patients in 1985 at
four hospitals in The Hague (population 450,000). They identified
49 cases of lung cancer among the patients who were registered
with a general practice, who were age 65 or younger and who had
resided in the city since 1965. They also selected 98 controls from
a population of residents having the same general age structure.

Ramsey, F.L. and Schafer, D.W. (2002). The Statistical Sleuth: A Course in Methods of Data Analysis (2nd ed)



Example - Birdkeeping and Lung Cancer - Data

library(Sleuth3)

birds = case2002

head (birds)

## LC FM SS BK AG YR CD
## 1 LungCancer Male Low Bird 37 19 12
## 2 LungCancer Male Low Bird 41 22 15
## 3 LungCancer Male High NoBird 43 19 15
## 4 LungCancer Male Low Bird 46 24 15
## 5 LungCancer Male Low Bird 49 31 20
## 6 LungCancer Male High NoBird 51 24 15

LC Whether subject has lung cancer

FM Sex of subject

SS Socioeconomic status

BK Indicator for birdkeeping

AG Age of subject (years)

YR Years of smoking prior to diagnosis or examination
CcD Average rate of smoking (cigarettes per day)

NoCancer is the reference response (0 or failure), LungCancer is the non-reference response (1 or success) - this
matters for interpretation.



Example - Birdkeeping and Lung Cancer - Data

What types of associations do you expect to see between the
predictors below and lung cancer? Might you expect any
interactions to be present?

LC  Whether subject has lung cancer

FM  Sex of subject

SS  Socioeconomic status

BK Indicator for birdkeeping

AG  Age of subject (years)

YR  Years of smoking prior to diagnosis or examination
CD  Average rate of smoking (cigarettes per day)



Interpreting linear regressions of binary data

We can use linear regression for binary data, and for very simple
models it gives reasonable and interpretable output.

LC~1

birds$LCnum <- as.numeric(birds$LC=="LungCancer")
sum (birds$LCnum)

## [1]1 49

nrow (birds)

## [1] 147

summary (Im(LCnum ~ 1, data=birds))$coef

## Estimate Std. Error t value Pr(>ltl)
## (Intercept) 0.3333333 0.03901372 8.544004 1.574829e-14



Interpreting linear regressions of binary data

We can use linear regression for binary data, and for very simple
models it gives reasonable and interpretable output.

LC ~ FM

modl <- Im(LCnum ~ FM, data=birds)
round (summary (mod1) $coef, 3)

#it Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.333 0.079 4.214 0
## FMMale 0.000 0.091 0.000 1

What is this model's estimated probability of lunc cancer for men?
for women?



Interpreting linear regressions of binary data

But if the model gets too complicated, then it can produce some
tricky results.

LC~FM+ YR

mod2 <- Im(LCnum ~ FM + YR, data=birds)
round (summary (mod2) $§coef, 3)

#Hit Estimate Std. Error t value Pr(>|t])
## (Intercept) 0.119 0.092 1.294 0.198
## FMMale -0.150 0.094 -1.592 0.114
## YR 0.012 0.003 4.044 0.000

What is this model's estimated probability of lunc cancer for men
who have never smoked? for women who never smoked?



Lung cancer as a function of smoking years

(p <- ggplot(birds, aes(x=YR, y=as.numeric(LC=="LungCancer")*1)) +
geom_jitter(height=0) + geom_smooth(method="1m", se=FALSE) +
ylab("Lung Cancer") + xlab("Years smoked prior to diagnosis") +
scale_y_continuous(breaks=c(0,1)) +
facet_grid(.~ FM))
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Odds

Odds are another way of quantifying the probability of an event,
commonly used in gambling (and logistic regression).

For some event E,

_ P(E) _ P(E)
0dds(E) = BiEey = T-A(E)

Similarly, if we are told the odds of E are x to y then
X

odds(E) = — =
(E) "

which implies

P(E) =x/(x+y), P(EY)=y/(x+y)



Odds Ratios

Odds Ratios compare the odds of an event in two different groups.
For some outcome of interest (say, disease) in two groups, (e.g.
exposed and unexposed),

OR — P(disease|exposed)/[1 — P(disease|exposed)]
~ P(disease|unexposed)/[1 — P(disease|unexposed)]

Facts about Odds Ratios
= ORs have range of (0, c0).

m OR = 1 means no difference between the groups.

m They have a multiplicative scale: e.g. OR = 0.5 and OR =2
both indicate that one group has twice the odds of another.

m This means that the log OR is on an additive scale of odds
(This is important for logistic regression!).

m OR is not a ratio of probabilities.



Unadjusted association btw lung cancer and sex

library(epitools)
birds$LC <- relevel(birds$LC, ref="NoCancer")
(tmp <- with(birds, table(FM, LC)))

## LC

## FM NoCancer LungCancer
##  Female 24 12
## Male 74 37

oddsratio (tmp)$measure

## odds ratio with 95% C.I.
## FM estimate lower upper
##  Female 1.0000000 NA NA

## Male 0.9954866 0.4516538 2.280673

Do men have different odds of lung cancer compared to women,
without adjustment for possible confounders?



Unadjusted association btw lung cancer and birdkeeping

birds$BK <- relevel (birds$BK, ref="NoBird")
(tmp <- with(birds, table(BK, LC)))

#i# LC

## BK NoCancer LungCancer
##  NoBird 64 16
##  Bird 34 33

oddsratio(tmp) $measure

## odds ratio with 95% C.I.
## BK estimate lower upper
##  NoBird 1.000000 NA NA

## Bird 3.827991 1.86773 8.124253

Do birdkeepers have different odds of lung cancer compared to
non-birdkeepers, without adjustment for possible confounders?



Lung cancer as a function of years smoked
Modeling the log-odds is one solution to the problem of linearity.

log odds(LC) ~ FM + YR

(p <- ggplot(birds, aes(x=YR, y=LCnum)) +
geom_jitter(height=0) + facet_grid(."FM) +
stat_smooth(method='glm', method.args=1list(family='binomial')) +
ylab("Lung Cancer") + xlab("Years smoked prior to diagnosis") +
scale_y_continuous (breaks=c(0,1)))
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A more drastic example: why we use the log-odds

| dropped individuals who smoked ;30 years prior to diagnosis who
did not have LC.

Lung Cancer
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Generalized linear models: defined

All generalized linear models have the following three
characteristics:

1. A probability distribution describing the outcome variable
» eg. Y ~ Bernoulli(p) — E[Y|p] = p.

2. A linear model
> =00+ B X1+ -+ BpXp

3. A link function that relates the linear model to the
parameter of the outcome distribution

> g(E[Y]) =g(p) =norE[Y]=p=2g""(n)



MLR is a special case of a GLM

For continuous outcome, we often do this

1. A probability distribution describing the outcome variable
> Y|X ~ Normal(p, 0?) — E[Y|X] = p.

2. A linear model
> n=PBo+ B X+ -+ BpXp

3. A link function that relates the linear model to the
parameter of the outcome distribution

» g(E[Y[X]) =g(p)=pn=n

gE[YIX]) = E[Y[X] = p=Fo+ b Xs + -+ BpXp



Logistic regression: a common GLM for 0/1 outcome data

1. A probability distribution describing the outcome variable
» Y|X ~ Bernoulli(p) — E[Y|X] = Pr(Y = 1|X) = p.

2. A linear model
> =P+ BiXi+ -+ BpXp

3. A link function that relates the linear model to the
parameter of the outcome distribution

> g(E[Y|X]) = g(p) = logit(p) = log 155 =1

g(E[Y|X]) = logit[Pr(Y = 1[X)] = fo + f1.Xa + -~ + BpXp



Logistic regression has log(odds) as the link
A logistic regression model can be defined as follows:

Yi|x; ~ Bernoulli(p;)
E[Yi[xi] = Pr(¥; = 1]x)) = pi
Pi

g(pi) = logit(p;) = log -——

logit(E[Y;|x;]) = logit(pi) = n = Bo + B1Xi1 + - -+ + BpXip

Logistic function

1.004

0.754

Q.0.504

0.25+

0.00 4




Example - Birdkeeping and Lung Cancer - Model

logitPr(LC = 1|x) = Bo+[1BK+P2FM+ 355+ 84AG+ 55 YR+ 56 CD

birds$LCnum <- as.numeric(birds$LC=="LungCancer")
Iml <- glm(LCnum ~ BK + FM + SS + AG + YR + CD,
data=birds, family=binomial)



Example - Birdkeeping and Lung Cancer - Interpretation

summary (1ml) $coef

#it Estimate Std. Error z value Pr(>lzl)
## (Intercept) -1.27063830 1.82530568 -0.6961236 0.4863514508
## BKBird 1.36259456 0.41127585 3.3130916 0.0009227076
## FMMale -0.56127270 0.53116056 -1.0566912 0.2906525319
## SSLow -0.10544761 0.46884614 -0.2249088 0.8220502474
## AG -0.03975542 0.03548022 -1.1204952 0.2625027758
## YR 0.07286848 0.02648741 2.7510612 0.0059402544
## CD 0.02601689 0.02552400 1.0193110 0.3080553359

Keeping all other predictors constant then,

» The odds ratio of getting lung cancer for bird keepers vs
non-bird keepers is exp(1.3626) = 3.91.

» The odds ratio of getting lung cancer for an additional year of
smoking is exp(0.0729) = 1.08.



What the numbers do not mean ...

The most common mistake made when interpreting logistic
regression is to treat an odds ratio as a ratio of probabilities.

Bird keepers are not 4x more likely to develop lung cancer than
non-bird keepers.

This is the difference between relative risk and an odds ratio.

P(disease|exposed)
P(disease|unexposed)

RR =

OR — P(disease|exposed)/[1 — P(disease|exposed)]
~ P(disease|unexposed)/[1 — P(disease|unexposed)]




To match or not to match

Case-control studies are common for (rare) binary outcomes

m Randomly selected controls — vanilla logistic regression
m Matched controls — conditional logistic regression

Conditional logistic regression

m Accounts for the fact that you have “adjusted” for some
variables in the design.

m Calculates an OR for each matched-set/pair, then “averages”
across sets

m Forfeits ability to estimate effects of matched variables, but
design can substantially improve power.

m Implemented in R with clogit ().



Important notes about GLMs

On logistic regression in particular...

m There are other link functions for binary data (e.g. probit,
cloglog).

m Other, less parametric methods may be appropriate here too —
e.g. CART, random forests, classification algorithms.

Beyond the scope of this course, but interesting topics...

m How are logistic models (and other GLMs) fitted?

m Can we perform the same kind of model diagnostics to
determine whether a model provides a good fit to data?

m Do we have the same power to infer smooth splines in
non-Gaussian GLMs?

m ROC curves and classification rules



