Introduction to multiple linear regression

Nicholas Reich, UMass-Amherst Biostatistics

Derivative of OpenIntro slides, released under a CC BY-NC-SA license

Outline

Introduction to multiple regression
Many variables in a model
Adjusted R^{2}

Checking model conditions using graphs

Multiple regression

- Simple linear regression: Bivariate - two variables: y and x
- Multiple linear regression: Multiple variables: y and x_{1}, x_{2}, \ldots

Weights of books

	weight (g)	volume $\left(\mathrm{cm}^{3}\right)$	cover
1	800	885	hc
2	950	1016	hc
3	1050	1125	hc
4	350	239	hc
5	750	701	hc
6	600	641	hc
7	1075	1228	hc
8	250	412	pb
9	700	953	pb
10	650	929	pb
11	975	1492	pb
12	350	419	pb
13	950	1010	pb
14	425	595	pb
15	725	1034	pb

Weights of books (cont.)

The scatterplot shows the relationship between weights and volumes of books as well as the regression output. Which of the below is correct?

(a) Weights of 80% of the books can be predicted accurately using this model.
(b) We would expect a book that is $10 \mathrm{~cm}^{3}$ bigger than another expected to weigh 7 g more.
(c) The correlation between weight and volume is $R=0.80^{2}=0.64$.
(d) The model underestimates the weight of the book with the highest volume.

Weights of books (cont.)

The scatterplot shows the relationship between weights and volumes of books as well as the regression output. Which of the below is correct?

(a) Weights of 80% of the books can be predicted accurately using this model.
(b) We would expect a book that is $10 \mathrm{~cm}^{3}$ bigger than another expected to weigh 7 g more.
(c) The correlation between weight and volume is $R=0.80^{2}=0.64$.
(d) The model underestimates the weight of the book with the highest volume.

Modeling weights of books using volume

somewhat abbreviated output...
Coefficients:

| | Estimate | Std. Error | t value | $\operatorname{Pr}(>\|\mathrm{t}\|)$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 107.67931 | 88.37758 | 1.218 | 0.245 |
| volume | 0.70864 | 0.09746 | 7.271 | $6.26 \mathrm{e}-06$ |

Residual standard error: 123.9 on 13 degrees of freedom Multiple R-squared: 0.8026, Adjusted R-squared: 0.7875 F-statistic: 52.87 on 1 and 13 DF , p-value: $6.262 \mathrm{e}-06$

Weights of hardcover and paperback books

Can you identify a trend in the relationship between volume and weight of hardcover and paperback books?

Weights of hardcover and paperback books

Can you identify a trend in the relationship between volume and weight of hardcover and paperback books?

Paperbacks generally weigh less than hardcover books after controlling for the book's volume.

Modeling weights of books using volume and cover type

Coefficients:

	Estimate	Std. Error		
rcept	197.96284	59.19274	3.344	0.005841
volume	0.71795	0.06153	11.669	6.6e-08
cover:pb	-184.04	40.49	-4.545	0.000672

Residual standard error: 78.2 on 12 degrees of freedom Multiple R-squared: 0.9275, Adjusted R-squared: 0.9154 F-statistic: 76.73 on 2 and 12 DF , p-value: $1.455 \mathrm{e}-07$

Visualising the linear model

Determining the reference level

Based on the regression output below, which level of cover is the reference level? Note that pb: paperback.

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	197.9628	59.1927	3.34	0.0058
volume	0.7180	0.0615	11.67	0.0000
cover:pb	-184.0473	40.4942	-4.55	0.0007

(a) paperback
(b) hardcover

Determining the reference level

Based on the regression output below, which level of cover is the reference level? Note that pb: paperback.

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	197.9628	59.1927	3.34	0.0058
volume	0.7180	0.0615	11.67	0.0000
cover:pb	-184.0473	40.4942	-4.55	0.0007

(a) paperback
(b) hardcover

Determining the reference level

Which of the below correctly describes the roles of variables in this regression model?

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	197.9628	59.1927	3.34	0.0058
volume	0.7180	0.0615	11.67	0.0000
cover:pb	-184.0473	40.4942	-4.55	0.0007

(a) response: weight; explanatory: volume, paperback cover
(b) response: weight; explanatory: volume, hardcover cover
(c) response: volume; explanatory: weight, cover type
(d) response: weight; explanatory: volume, cover type

Determining the reference level

Which of the below correctly describes the roles of variables in this regression model?

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	197.9628	59.1927	3.34	0.0058
volume	0.7180	0.0615	11.67	0.0000
cover:pb	-184.0473	40.4942	-4.55	0.0007

(a) response: weight; explanatory: volume, paperback cover
(b) response: weight; explanatory: volume, hardcover cover
(c) response: volume; explanatory: weight, cover type
(d) response: weight; explanatory: volume, cover type

Linear model

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

Linear model

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

$$
\widehat{\text { weight }}=197.96+0.72 \text { volume }-184.05 \text { cover }: p b
$$

Linear model

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

$$
\widehat{\text { weight }}=197.96+0.72 \text { volume }-184.05 \text { cover }: p b
$$

1. For hardcover books: plug in 0 for cover

$$
\widehat{\text { weight }}=197.96+0.72 \text { volume }-184.05 \times 0
$$

Linear model

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

$$
\widehat{\text { weight }}=197.96+0.72 \text { volume }-184.05 \text { cover }: p b
$$

1. For hardcover books: plug in 0 for cover

$$
\begin{aligned}
\widehat{\text { weight }} & =197.96+0.72 \text { volume }-184.05 \times 0 \\
& =197.96+0.72 \text { volume }
\end{aligned}
$$

Linear model

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

$$
\widehat{\text { weight }}=197.96+0.72 \text { volume }-184.05 \text { cover }: p b
$$

1. For hardcover books: plug in 0 for cover

$$
\begin{aligned}
\widehat{\text { weight }} & =197.96+0.72 \text { volume }-184.05 \times 0 \\
& =197.96+0.72 \text { volume }
\end{aligned}
$$

2. For paperback books: plug in 1 for cover

$$
\widehat{\text { weight }}=197.96+0.72 \text { volume }-184.05 \times 1
$$

Linear model

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

$$
\widehat{\text { weight }}=197.96+0.72 \text { volume }-184.05 \text { cover }: p b
$$

1. For hardcover books: plug in 0 for cover

$$
\begin{aligned}
\widehat{\text { weight }} & =197.96+0.72 \text { volume }-184.05 \times 0 \\
& =197.96+0.72 \text { volume }
\end{aligned}
$$

2. For paperback books: plug in 1 for cover

$$
\begin{aligned}
\widehat{\text { weight }} & =197.96+0.72 \text { volume }-184.05 \times 1 \\
& =13.91+0.72 \text { volume }
\end{aligned}
$$

Visualising the linear model

Interpretation of the regression coefficients

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

Interpretation of the regression coefficients

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

- Slope of volume: All else held constant, books that are 1 more cubic centimeter in volume tend to weigh about 0.72 grams more.

Interpretation of the regression coefficients

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

- Slope of volume: All else held constant, books that are 1 more cubic centimeter in volume tend to weigh about 0.72 grams more.
- Slope of cover: All else held constant, the model predicts that paperback books weigh 184 grams lower than hardcover books.

Interpretation of the regression coefficients

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

- Slope of volume: All else held constant, books that are 1 more cubic centimeter in volume tend to weigh about 0.72 grams more.
- Slope of cover: All else held constant, the model predicts that paperback books weigh 184 grams lower than hardcover books.
- Intercept: Hardcover books with no volume are expected on average to weigh 198 grams.

Interpretation of the regression coefficients

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

- Slope of volume: All else held constant, books that are 1 more cubic centimeter in volume tend to weigh about 0.72 grams more.
- Slope of cover: All else held constant, the model predicts that paperback books weigh 184 grams lower than hardcover books.
- Intercept: Hardcover books with no volume are expected on average to weigh 198 grams.
- Obviously, the intercept does not make sense in context. It only serves to adjust the height of the line.

Prediction

Which of the following is the correct calculation for the predicted weight of a paperback book that is $600 \mathrm{~cm}^{3}$?

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

(a) $197.96+0.72$ * 600-184.05 * 1
(b) $184.05+0.72$ * $600-197.96$ * 1
(c) $197.96+0.72$ * $600-184.05$ * 0
(d) $197.96+0.72$ * $1-184.05$ * 600

Prediction

Which of the following is the correct calculation for the predicted weight of a paperback book that is $600 \mathrm{~cm}^{3}$?

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

(a) $197.96+0.72$ * $600-184.05$ * $1=445.91$ grams
(b) $184.05+0.72$ * $600-197.96$ * 1
(c) $197.96+0.72$ * $600-184.05 * 0$
(d) $197.96+0.72$ * $1-184.05$ * 600

Another example: Modeling kid's test scores

Predicting cognitive test scores of three- and four-year-old children using characteristics of their mothers. Data are from a survey of adult American women and their children - a subsample from the National Longitudinal Survey of Youth.

	kid_score	mom_hs	mom_iq	mom_work	mom_age
1	65	yes	121.12	yes	27
\vdots					
5	115	yes	92.75	yes	27
6	98	no	107.90	no	18
\vdots					
434	70	yes	91.25	yes	25

Interpreting the slope

What is the correct interpretation of the slope for mom's IQ?

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	19.59	9.22	2.13	0.03
mom_hs:yes	5.09	2.31	2.20	0.03
mom_iq	0.56	0.06	9.26	0.00
mom_work:yes	2.54	2.35	1.08	0.28
mom_age	0.22	0.33	0.66	0.51

, kids with mothers whose IQs are one point higher tend to score on average 0.56 points higher.

Interpreting the slope

What is the correct interpretation of the slope for mom's IQ?

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	19.59	9.22	2.13	0.03
mom_hs:yes	5.09	2.31	2.20	0.03
mom_iq	0.56	0.06	9.26	0.00
mom_work:yes	2.54	2.35	1.08	0.28
mom_age	0.22	0.33	0.66	0.51

All else held constant, kids with mothers whose IQs are one point higher tend to score on average 0.56 points higher.

Interpreting the slope

What is the correct interpretation of the intercept?

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	19.59	9.22	2.13	0.03
mom_hs:yes	5.09	2.31	2.20	0.03
mom_iq	0.56	0.06	9.26	0.00
mom_work:yes	2.54	2.35	1.08	0.28
mom_age	0.22	0.33	0.66	0.51

Interpreting the slope

What is the correct interpretation of the intercept?

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	19.59	9.22	2.13	0.03
mom_hs:yes	5.09	2.31	2.20	0.03
mom_iq	0.56	0.06	9.26	0.00
mom_work:yes	2.54	2.35	1.08	0.28
mom_age	0.22	0.33	0.66	0.51

Kids whose moms haven't gone to HS, did not work during the first three years of the kid's life, have an IQ of 0 and are 0 yrs old are expected on average to score 19.59. Obviously, the intercept does not make any sense in context.

Interpreting the slope

What is the correct interpretation of the slope for mom_work?

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	19.59	9.22	2.13	0.03
mom_hs:yes	5.09	2.31	2.20	0.03
mom_iq	0.56	0.06	9.26	0.00
mom_work:yes	2.54	2.35	1.08	0.28
mom_age	0.22	0.33	0.66	0.51

All else being equal, kids whose moms worked during the first three year's of the kid's life
(a) are estimated to score 2.54 points lower
(b) are estimated to score 2.54 points higher than those whose moms did not work.

Interpreting the slope

What is the correct interpretation of the slope for mom_work?

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	19.59	9.22	2.13	0.03
mom_hs:yes	5.09	2.31	2.20	0.03
mom_iq	0.56	0.06	9.26	0.00
mom_work:yes	2.54	2.35	1.08	0.28
mom_age	0.22	0.33	0.66	0.51

All else being equal, kids whose moms worked during the first three year's of the kid's life
(a) are estimated to score 2.54 points lower
(b) are estimated to score 2.54 points higher
than those whose moms did not work.

Modeling poverty

Description: Data for 3083 counties in the United States, including variables for demographic, financial, education, and other characteristics.
Source: Census website.

- FIPS: FIPS code.
- poverty: Percent below poverty level (2006-2010).
- pop2010: 2010 county population.
- female_house: Percent of population that lives in a female-owned house (2010).
- metro_res: Percent of population living in metropolitan area.
- hs_grad: Percent of population that is a high school graduate (2006-2010).

Modeling poverty

Predicting poverty using \% female householder

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	3.31	1.90	1.74	0.09
female_house	0.69	0.16	4.32	0.00

$$
\begin{aligned}
R & =0.53 \\
R^{2} & =0.53^{2}=0.28
\end{aligned}
$$

Another look at R^{2}

R^{2} can be calculated in three ways:

Another look at R^{2}

R^{2} can be calculated in three ways:

1. square the correlation coefficient of x and y (how we have been calculating it)

Another look at R^{2}

R^{2} can be calculated in three ways:

1. square the correlation coefficient of x and y (how we have been calculating it)
2. square the correlation coefficient of y and \hat{y}

Another look at R^{2}

R^{2} can be calculated in three ways:

1. square the correlation coefficient of x and y (how we have been calculating it)
2. square the correlation coefficient of y and \hat{y}
3. based on definition:

$$
R^{2}=\frac{\text { explained variability in } y}{\text { total variability in } y}
$$

Another look at R^{2}

R^{2} can be calculated in three ways:

1. square the correlation coefficient of x and y (how we have been calculating it)
2. square the correlation coefficient of y and \hat{y}
3. based on definition:

$$
R^{2}=\frac{\text { explained variability in } y}{\text { total variability in } y}
$$

Using ANOVA we can calculate the explained variability and total variability in y.

Sum of squares

	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$
female_house	1	132.57	132.57	18.68	0.00
Residuals	49	347.68	7.10		
Total	50	480.25			

Sum of squares

	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$
female_house	1	132.57	132.57	18.68	0.00
Residuals	49	347.68	7.10		
Total	50	480.25			

Sum of squares of $y: S S_{\text {Total }}=\sum(y-\bar{y})^{2}=480.25 \rightarrow$ total variability

Sum of squares

	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$
female_house	1	132.57	132.57	18.68	0.00
Residuals	49	347.68	7.10		
Total	50	480.25			

Sum of squares of $y: S S_{\text {Total }}=\sum(y-\bar{y})^{2}=480.25 \rightarrow$ total variability Sum of squares of residuals: $S S_{\text {Error }}=\sum e_{i}^{2}=347.68 \rightarrow$ unexplained variability

Sum of squares

	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$
female_house	1	132.57	132.57	18.68	0.00
Residuals	49	347.68	7.10		
Total	50	480.25			

Sum of squares of $y: S S_{\text {Total }}=\sum(y-\bar{y})^{2}=480.25 \rightarrow$ total variability Sum of squares of residuals: $S S_{\text {Error }}=\sum e_{i}^{2}=347.68 \rightarrow$ unexplained variability

Sum of squares of x : $S S_{\text {Model }}=S S_{\text {Total }}-S S_{\text {Error }} \rightarrow$ explained variability

$$
=480.25-347.68=132.57
$$

Sum of squares

	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$
female_house	1	132.57	132.57	18.68	0.00
Residuals	49	347.68	7.10		
Total	50	480.25			

Sum of squares of $y: S S_{\text {Total }}=\sum(y-\bar{y})^{2}=480.25 \rightarrow$ total variability Sum of squares of residuals: $S S_{\text {Error }}=\sum e_{i}^{2}=347.68 \rightarrow$ unexplained variability

Sum of squares of x : $S S_{\text {Model }}=S S_{\text {Total }}-S S_{\text {Error }} \rightarrow$ explained variability

$$
=480.25-347.68=132.57
$$

$$
R^{2}=\frac{\text { explained variability }}{\text { total variability }}=\frac{132.57}{480.25}=0.28
$$

Why bother?

Why bother with another approach for calculating R^{2} when we had a perfectly good way to calculate it as the correlation coefficient squared?

Why bother?

Why bother with another approach for calculating R^{2} when we had a perfectly good way to calculate it as the correlation coefficient squared?

- For single-predictor linear regression, having three ways to calculate the same value may seem like overkill.
- However, in multiple linear regression, we can't calculate R^{2} as the square of the correlation between x and y because we have multiple $x s$.
- And next we'll learn another measure of explained variability, adjusted R^{2}, that requires the use of the third approach, ratio of explained and unexplained variability.

Predicting poverty using \% female hh + \% white

Linear model:	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	-2.58	5.78	-0.45	0.66
female_house	0.89	0.24	3.67	0.00
white	0.04	0.04	1.08	0.29

ANOVA:	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$
female_house	1	132.57	132.57	18.74	0.00
white	1	8.21	8.21	1.16	0.29
Residuals	48	339.47	7.07		
Total	50	480.25			

Predicting poverty using \% female hh + \% white

Linear model:	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	-2.58	5.78	-0.45	0.66
female_house	0.89	0.24	3.67	0.00
white	0.04	0.04	1.08	0.29

ANOVA:	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$
female_house	1	132.57	132.57	18.74	0.00
white	1	8.21	8.21	1.16	0.29
Residuals	48	339.47	7.07		
Total	50	480.25			

$$
R^{2}=\frac{\text { explained variability }}{\text { total variability }}=\frac{132.57+8.21}{480.25}=0.29
$$

Does adding the variable white to the model add valuable information that wasn't provided by female_house?

	R^{2}	Adjusted R^{2}
Model 1 (Single-predictor)	0.28	0.26
Model 2 (Multiple)	0.29	0.26

	R^{2}	Adjusted R^{2}
Model 1 (Single-predictor)	0.28	0.26
Model 2 (Multiple)	0.29	0.26

- When any variable is added to the model R^{2} increases.

	R^{2}	Adjusted R^{2}
Model 1 (Single-predictor)	0.28	0.26
Model 2 (Multiple)	0.29	0.26

- When any variable is added to the model R^{2} increases.
- But if the added variable doesn't really provide any new information, or is completely unrelated, adjusted R^{2} does not increase.

Adjusted R^{2}

Adjusted R^{2}

$$
R_{a d j}^{2}=1-\left(\frac{S S_{\text {Error }}}{S S_{\text {Total }}} \times \frac{n-1}{n-p-1}\right)
$$

where n is the number of cases and p is the number of predictors (explanatory variables) in the model.

- Because p is never negative, $R_{a d j}^{2}$ will always be smaller than R^{2}.
- $R_{a d j}^{2}$ applies a penalty for the number of predictors included in the model.
- Therefore, we choose models with higher $R_{a d j}^{2}$ over others.

Calculate adjusted R^{2}

ANOVA:	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$
female_house	1	132.57	132.57	18.74	0.0001
white	1	8.21	8.21	1.16	0.2868
Residuals	48	339.47	7.07		
Total	50	480.25			

$$
R_{\text {adj }}^{2}=1-\left(\frac{S S_{\text {Error }}}{S S_{\text {Total }}} \times \frac{n-1}{n-p-1}\right)
$$

Calculate adjusted R^{2}

ANOVA:	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$
female_house	1	132.57	132.57	18.74	0.0001
white	1	8.21	8.21	1.16	0.2868
Residuals	48	339.47	7.07		
Total	50	480.25			

$$
\begin{aligned}
R_{\text {adj }}^{2} & =1-\left(\frac{S S_{\text {Error }}}{S S_{\text {Total }}} \times \frac{n-1}{n-p-1}\right) \\
& =1-\left(\frac{339.47}{480.25} \times \frac{51-1}{51-2-1}\right)
\end{aligned}
$$

Calculate adjusted R^{2}

ANOVA:	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$
female_house	1	132.57	132.57	18.74	0.0001
white	1	8.21	8.21	1.16	0.2868
Residuals	48	339.47	7.07		
Total	50	480.25			

$$
\begin{aligned}
R_{\text {adj }}^{2} & =1-\left(\frac{S S_{\text {Error }}}{S S_{\text {Total }}} \times \frac{n-1}{n-p-1}\right) \\
& =1-\left(\frac{339.47}{480.25} \times \frac{51-1}{51-2-1}\right) \\
& =1-\left(\frac{339.47}{480.25} \times \frac{50}{48}\right)
\end{aligned}
$$

Calculate adjusted R^{2}

ANOVA:	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$
female_house	1	132.57	132.57	18.74	0.0001
white	1	8.21	8.21	1.16	0.2868
Residuals	48	339.47	7.07		
Total	50	480.25			

$$
\begin{aligned}
R_{\text {adj }}^{2} & =1-\left(\frac{S S_{\text {Error }}}{S S_{\text {Total }}} \times \frac{n-1}{n-p-1}\right) \\
& =1-\left(\frac{339.47}{480.25} \times \frac{51-1}{51-2-1}\right) \\
& =1-\left(\frac{339.47}{480.25} \times \frac{50}{48}\right) \\
& =1-0.74
\end{aligned}
$$

Calculate adjusted R^{2}

ANOVA:	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$
female_house	1	132.57	132.57	18.74	0.0001
white	1	8.21	8.21	1.16	0.2868
Residuals	48	339.47	7.07		
Total	50	480.25			

$$
\begin{aligned}
R_{\text {adj }}^{2} & =1-\left(\frac{S S_{\text {Error }}}{S S_{\text {Total }}} \times \frac{n-1}{n-p-1}\right) \\
& =1-\left(\frac{339.47}{480.25} \times \frac{51-1}{51-2-1}\right) \\
& =1-\left(\frac{339.47}{480.25} \times \frac{50}{48}\right) \\
& =1-0.74 \\
& =0.26
\end{aligned}
$$

Outline

Introduction to multiple regression

Checking model conditions using graphs

Modeling conditions

$$
\hat{y}=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{p} x_{p}
$$

The model depends on the following conditions

1. residuals are nearly normal (primary concern relates to residuals that are outliers)
2. residuals have constant variability
3. residuals are independent
4. each variable is linearly related to the outcome

We often use graphical methods to check the validity of these conditions, which we will go through in detail in the following slides.

(1) nearly normal residuals

normal probability plot and/or histogram of residuals:

Does this condition appear to be satisfied?

(2) constant variability in residuals

scatterplot of residuals and/or absolute value of residuals vs. fitted (predicted):

Does this condition appear to be satisfied?

Checking constant variance - recap

- When we did simple linear regression (one explanatory variable) we checked the constant variance condition using a plot of residuals vs. x.
- With multiple linear regression (2+ explanatory variables) we checked the constant variance condition using a plot of residuals vs. fitted.

Why are we using different plots?

Checking constant variance - recap

- When we did simple linear regression (one explanatory variable) we checked the constant variance condition using a plot of residuals vs. x.
- With multiple linear regression (2+ explanatory variables) we checked the constant variance condition using a plot of residuals vs. fitted.

Why are we using different plots?

In multiple linear regression there are many explanatory variables, so a plot of residuals vs. one of them wouldn't give us the complete picture.

(3) independent residuals

scatterplot of residuals vs. order of data collection:

Residuals vs. order of data collection

Does this condition appear to be satisfied?

More on the condition of independent residuals

- Checking for independent residuals allows us to indirectly check for independent observations.
- If observations and residuals are independent, we would not expect to see an increasing or decreasing trend in the scatterplot of residuals vs. order of data collection.
- This condition is often violated when we have time series data. Such data require more advanced time series regression techniques for proper analysis.

(4) linear relationships

scatterplot of residuals vs. each (numerical) explanatory variable:

Does this condition appear to be satisfied?

Note: We use residuals instead of the predictors on the y-axis so that we can still check for linearity without worrying about other possible violations like collinearity between the predictors.

