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Multiple regression

I Simple linear regression: Bivariate - two variables: y and x
I Multiple linear regression: Multiple variables: y and x1, x2, · · ·



Weights of books

weight (g) volume (cm3) cover
1 800 885 hc
2 950 1016 hc
3 1050 1125 hc
4 350 239 hc
5 750 701 hc
6 600 641 hc
7 1075 1228 hc
8 250 412 pb
9 700 953 pb

10 650 929 pb
11 975 1492 pb
12 350 419 pb
13 950 1010 pb
14 425 595 pb
15 725 1034 pb

w

l

h

From: Maindonald, J.H. and Braun, W.J. (2nd ed., 2007) “Data Analysis and Graphics Using R”



Weights of books (cont.)

The scatterplot shows the rela-
tionship between weights and vol-
umes of books as well as the re-
gression output. Which of the be-
low is correct?
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weight = 108 + 0.7 volume

R2= 80%

(a) Weights of 80% of the books can be predicted accurately using
this model.

(b) We would expect a book that is 10 cm3 bigger than another
expected to weigh 7 g more.

(c) The correlation between weight and volume is R = 0.802 = 0.64.

(d) The model underestimates the weight of the book with the highest
volume.
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Modeling weights of books using volume

somewhat abbreviated output...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 107.67931 88.37758 1.218 0.245

volume 0.70864 0.09746 7.271 6.26e-06

Residual standard error: 123.9 on 13 degrees of freedom

Multiple R-squared: 0.8026, Adjusted R-squared: 0.7875

F-statistic: 52.87 on 1 and 13 DF, p-value: 6.262e-06



Weights of hardcover and paperback books

Can you identify a trend in the relationship between volume and weight
of hardcover and paperback books?
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Weights of hardcover and paperback books

Can you identify a trend in the relationship between volume and weight
of hardcover and paperback books?

Paperbacks generally weigh less than hardcover books after controlling for
the book’s volume.
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Modeling weights of books using volume and cover type

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 197.96284 59.19274 3.344 0.005841 **

volume 0.71795 0.06153 11.669 6.6e-08 ***

cover:pb -184.04727 40.49420 -4.545 0.000672 ***

Residual standard error: 78.2 on 12 degrees of freedom

Multiple R-squared: 0.9275, Adjusted R-squared: 0.9154

F-statistic: 76.73 on 2 and 12 DF, p-value: 1.455e-07



Visualising the linear model
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Determining the reference level

Based on the regression output below, which level of cover is the ref-
erence level? Note that pb: paperback.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.9628 59.1927 3.34 0.0058

volume 0.7180 0.0615 11.67 0.0000
cover:pb -184.0473 40.4942 -4.55 0.0007

(a) paperback

(b) hardcover
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Determining the reference level

Which of the below correctly describes the roles of variables in this
regression model?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.9628 59.1927 3.34 0.0058

volume 0.7180 0.0615 11.67 0.0000
cover:pb -184.0473 40.4942 -4.55 0.0007

(a) response: weight; explanatory: volume, paperback cover

(b) response: weight; explanatory: volume, hardcover cover

(c) response: volume; explanatory: weight, cover type

(d) response: weight; explanatory: volume, cover type
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Linear model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.96 59.19 3.34 0.01

volume 0.72 0.06 11.67 0.00
cover:pb -184.05 40.49 -4.55 0.00

ŵeight = 197.96 + 0.72 volume − 184.05 cover : pb

1. For hardcover books: plug in 0 for cover

ŵeight = 197.96 + 0.72 volume − 184.05 × 0

= 197.96 + 0.72 volume

2. For paperback books: plug in 1 for cover

ŵeight = 197.96 + 0.72 volume − 184.05 × 1

= 13.91 + 0.72 volume
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Visualising the linear model
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Interpretation of the regression coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.96 59.19 3.34 0.01

volume 0.72 0.06 11.67 0.00
cover:pb -184.05 40.49 -4.55 0.00

I Slope of volume: All else held constant, books that are 1 more
cubic centimeter in volume tend to weigh about 0.72 grams more.

I Slope of cover: All else held constant, the model predicts that
paperback books weigh 184 grams lower than hardcover books.

I Intercept: Hardcover books with no volume are expected on
average to weigh 198 grams.

I Obviously, the intercept does not make sense in context. It only
serves to adjust the height of the line.
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Prediction

Which of the following is the correct calculation for the predicted weight
of a paperback book that is 600 cm3?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.96 59.19 3.34 0.01

volume 0.72 0.06 11.67 0.00
cover:pb -184.05 40.49 -4.55 0.00

(a) 197.96 + 0.72 * 600 - 184.05 * 1

(b) 184.05 + 0.72 * 600 - 197.96 * 1

(c) 197.96 + 0.72 * 600 - 184.05 * 0

(d) 197.96 + 0.72 * 1 - 184.05 * 600



Prediction

Which of the following is the correct calculation for the predicted weight
of a paperback book that is 600 cm3?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.96 59.19 3.34 0.01

volume 0.72 0.06 11.67 0.00
cover:pb -184.05 40.49 -4.55 0.00

(a) 197.96 + 0.72 * 600 - 184.05 * 1 = 445.91 grams

(b) 184.05 + 0.72 * 600 - 197.96 * 1

(c) 197.96 + 0.72 * 600 - 184.05 * 0

(d) 197.96 + 0.72 * 1 - 184.05 * 600



Another example: Modeling kid’s test scores

Predicting cognitive test scores of three- and four-year-old children
using characteristics of their mothers. Data are from a survey of adult
American women and their children - a subsample from the National
Longitudinal Survey of Youth.

kid score mom hs mom iq mom work mom age
1 65 yes 121.12 yes 27
...

5 115 yes 92.75 yes 27
6 98 no 107.90 no 18
...

434 70 yes 91.25 yes 25

Gelman, Hill. Data Analysis Using Regression and Multilevel/Hierarchical Models. (2007) Cambridge University Press.



Interpreting the slope

What is the correct interpretation of the slope for mom’s IQ?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.59 9.22 2.13 0.03

mom hs:yes 5.09 2.31 2.20 0.03
mom iq 0.56 0.06 9.26 0.00

mom work:yes 2.54 2.35 1.08 0.28
mom age 0.22 0.33 0.66 0.51

All else held constant

, kids with mothers whose IQs are one point
higher tend to score on average 0.56 points higher.
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What is the correct interpretation of the intercept?
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Interpreting the slope

What is the correct interpretation of the intercept?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.59 9.22 2.13 0.03

mom hs:yes 5.09 2.31 2.20 0.03
mom iq 0.56 0.06 9.26 0.00

mom work:yes 2.54 2.35 1.08 0.28
mom age 0.22 0.33 0.66 0.51

Kids whose moms haven’t gone to HS, did not work during the first
three years of the kid’s life, have an IQ of 0 and are 0 yrs old are
expected on average to score 19.59. Obviously, the intercept does
not make any sense in context.



Interpreting the slope

What is the correct interpretation of the slope for mom work?

Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.59 9.22 2.13 0.03

mom hs:yes 5.09 2.31 2.20 0.03
mom iq 0.56 0.06 9.26 0.00

mom work:yes 2.54 2.35 1.08 0.28
mom age 0.22 0.33 0.66 0.51

All else being equal, kids whose moms worked during the first three
year’s of the kid’s life

(a) are estimated to score 2.54 points lower

(b) are estimated to score 2.54 points higher

than those whose moms did not work.
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Modeling poverty

Description: Data for 3083 counties in the United States, including
variables for demographic, financial, education, and other
characteristics.
Source: Census website.

I FIPS: FIPS code.
I poverty: Percent below poverty level (2006-2010).
I pop2010: 2010 county population.
I female house: Percent of population that lives in a female-owned

house (2010).
I metro res: Percent of population living in metropolitan area.
I hs grad: Percent of population that is a high school graduate

(2006-2010).
I ...



Modeling poverty
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Predicting poverty using % female householder

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.31 1.90 1.74 0.09

female house 0.69 0.16 4.32 0.00
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R = 0.53

R2 = 0.532 = 0.28



Another look at R2

R2 can be calculated in three ways:

1. square the correlation coefficient of x and y (how we have been
calculating it)

2. square the correlation coefficient of y and ŷ

3. based on definition:

R2 =
explained variability in y

total variability in y

Using ANOVA we can calculate the explained variability and total
variability in y.



Another look at R2

R2 can be calculated in three ways:

1. square the correlation coefficient of x and y (how we have been
calculating it)

2. square the correlation coefficient of y and ŷ

3. based on definition:

R2 =
explained variability in y

total variability in y

Using ANOVA we can calculate the explained variability and total
variability in y.



Another look at R2

R2 can be calculated in three ways:

1. square the correlation coefficient of x and y (how we have been
calculating it)

2. square the correlation coefficient of y and ŷ
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Sum of squares

Df Sum Sq Mean Sq F value Pr(>F)
female house 1 132.57 132.57 18.68 0.00
Residuals 49 347.68 7.10
Total 50 480.25

Sum of squares of y: SSTotal =
∑

(y − ȳ)2 = 480.25→ total variability

Sum of squares of residuals: SSError =
∑

e2
i = 347.68 → unexplained variability

Sum of squares of x: SSModel = SSTotal − SSError → explained variability

= 480.25 − 347.68 = 132.57

R2 =
explained variability

total variability
=

132.57
480.25

= 0.28 X
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Why bother?

Why bother with another approach for calculating R2 when we had
a perfectly good way to calculate it as the correlation coefficient
squared?

I For single-predictor linear regression, having three ways to
calculate the same value may seem like overkill.

I However, in multiple linear regression, we can’t calculate R2 as
the square of the correlation between x and y because we have
multiple xs.

I And next we’ll learn another measure of explained variability,
adjusted R2, that requires the use of the third approach, ratio of
explained and unexplained variability.
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Predicting poverty using % female hh + % white

Linear model: Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.58 5.78 -0.45 0.66

female house 0.89 0.24 3.67 0.00
white 0.04 0.04 1.08 0.29

ANOVA: Df Sum Sq Mean Sq F value Pr(>F)
female house 1 132.57 132.57 18.74 0.00
white 1 8.21 8.21 1.16 0.29
Residuals 48 339.47 7.07
Total 50 480.25

R2 =
explained variability

total variability
=

132.57 + 8.21
480.25

= 0.29
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Does adding the variable white to the model add valuable information
that wasn’t provided by female house?
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R2 vs. adjusted R2

R2 Adjusted R2

Model 1 (Single-predictor) 0.28 0.26

Model 2 (Multiple) 0.29 0.26

I When any variable is added to the model R2 increases.
I But if the added variable doesn’t really provide any new

information, or is completely unrelated, adjusted R2 does not
increase.
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Adjusted R2

Adjusted R2

R2
adj = 1 −

(
SSError

SSTotal
×

n − 1
n − p − 1

)
where n is the number of cases and p is the number of predictors
(explanatory variables) in the model.

I Because p is never negative, R2
adj will always be smaller than R2.

I R2
adj applies a penalty for the number of predictors included in the

model.
I Therefore, we choose models with higher R2

adj over others.



Calculate adjusted R2

ANOVA: Df Sum Sq Mean Sq F value Pr(>F)
female house 1 132.57 132.57 18.74 0.0001
white 1 8.21 8.21 1.16 0.2868
Residuals 48 339.47 7.07
Total 50 480.25

R2
adj = 1 −

(
SSError

SSTotal
×

n − 1
n − p − 1

)

= 1 −
(
339.47
480.25

×
51 − 1

51 − 2 − 1

)
= 1 −

(
339.47
480.25

×
50
48

)
= 1 − 0.74

= 0.26
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Outline

Introduction to multiple regression

Checking model conditions using graphs



Modeling conditions

ŷ = β0 + β1x1 + β2x2 + · · · + βpxp

The model depends on the following conditions

1. residuals are nearly normal (primary concern relates to residuals
that are outliers)

2. residuals have constant variability

3. residuals are independent

4. each variable is linearly related to the outcome

We often use graphical methods to check the validity of these
conditions, which we will go through in detail in the following slides.



(1) nearly normal residuals

normal probability plot and/or histogram of residuals:
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Does this condition appear to be satisfied?



(2) constant variability in residuals

scatterplot of residuals and/or absolute value of residuals vs. fitted
(predicted):

3.8 4.0 4.2 4.4 4.6

−1.5

−1.0

−0.5

0.0

0.5

1.0
Residuals vs. fitted

fitted

re
si

du
al

s

3.8 4.0 4.2 4.4 4.6

0.0

0.5

1.0

1.5

Absolute value of residuals vs. fitted

fitted

ab
s(

re
si

du
al

s)

Does this condition appear to be satisfied?



Checking constant variance - recap

I When we did simple linear regression (one explanatory variable)
we checked the constant variance condition using a plot of
residuals vs. x.

I With multiple linear regression (2+ explanatory variables) we
checked the constant variance condition using a plot of residuals
vs. fitted.

Why are we using different plots?



Checking constant variance - recap

I When we did simple linear regression (one explanatory variable)
we checked the constant variance condition using a plot of
residuals vs. x.

I With multiple linear regression (2+ explanatory variables) we
checked the constant variance condition using a plot of residuals
vs. fitted.

Why are we using different plots?

In multiple linear regression there are many explanatory variables, so
a plot of residuals vs. one of them wouldn’t give us the complete
picture.



(3) independent residuals

scatterplot of residuals vs. order of data collection:
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More on the condition of independent residuals

I Checking for independent residuals allows us to indirectly check
for independent observations.

I If observations and residuals are independent, we would not
expect to see an increasing or decreasing trend in the scatterplot
of residuals vs. order of data collection.

I This condition is often violated when we have time series data.
Such data require more advanced time series regression
techniques for proper analysis.



(4) linear relationships

scatterplot of residuals vs. each (numerical) explanatory variable:
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Note: We use residuals instead of the predictors on the y-axis so that we can still

check for linearity without worrying about other possible violations like collinearity

between the predictors.
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