Lab 5: Hypothesis testing in linear regression models
Nicholas G Reich, for PUBHLTH 490ST at UMass-Amherst

Introduction to Hypothesis Testing

A central question in regression analysis is “How can we formally evaluate statistical evidence about associations
between the observed variables, while controlling for the presence of other factors?”

Confidence intervals are one important tool for evaluating evidence in models. This approach allows us to
give an interval of possible values (often centered on our “best guess” of a parameter) that we think is likely
to cover the true value. However, another common approach used to assess models is to use hypothesis
testing. Hypothesis testing is described in nice intuitive detail in Kaplan, Chapters 13-15, and this lab will
highlight some of the key points covered in those chapters.

Hypothesis testing relies on a certain logic that enables us to weigh evidence present in our dataset. In
particular, we end up calculating p-values, which represent the probability of observing the data that we did
observe, given that a particular hypothesis (our null hypothesis, or Hy) is true. Oftentimes, statistical theory
can gives us tidy results that help us determine what the world would look like if Hy were true. Othertimes,
we might need to rely on our intuition and computation to show us what the Hy version of the world would
look like.

In all but the most customized and complicated regression settings (far beyond the scope of this course),
we can use the results from statistical theory to make simple calculations that perform hypothesis tests.
However, even in these simple settings it can be useful to see the other computational approach, as it gives a
peek under the hood of hypothesis testing.

Getting started

Let’s use the FEV data again and focus on the relationship betwen the fev variable with the age, height, and
smoke covariates. To start, let’s load the data into our current R session:

library("Hmisc")
getHdata (FEV)

Exercise 1

Let’s say that we are interested in exploring the model that uses age, smoke, height and sex to predict the
outcome. Fit this model. Interpret the coefficients. For now, don’t give a confidence interval or interpret our
uncertainty.

fm <- Im(fev ~ age + smoke + height + sex, data=FEV)

Exercise 2

We are interested in testing a hypothesis about whether smoking is associated with fev. One way to address
this question is to set up a hypothetical world where we know that smoking does not have an association
with fev time. One way to achieve this is to randomly shuffle or permute the values of the covariate. By
randomly shuffling these values, we are breaking any association that might exist. Test out this shuffling
method and see for yourself what the data looks like when we assign a random value of smoking from our
dataset to each net time. First off, why do smokers have higher FEV than non-smokers? Second, describe
the changes you see when you shuffle smoking status.



library(mosaic)
gplot(smoke, fev, data=FEV) + geom_boxplot ()
gplot(shuffle(smoke), fev, data=FEV) + geom_boxplot ()

Exercise 3

We know that by “shuffling” smoking status, we can create single datasets that represent a reality where
smoking is not related to any other of the variables, including fev. But this is a noisy process (remember,
data collection is where the randomness happens), and each dataset will look different. Use the shuffle()
function and the do() syntax from Lecture 7 to run a simulation where you fit a set of regression models
from Exercise 1 where smoke has been shuffled. Try doing this for different numbers of times. Pick a number
of repetitions (V) that is big enough so that when you repeat the experiment the results don’t appreciably
change, but that runs pretty quickly overall. Hint: by “results don’t change” you could think about plotting
the estimates of one of the coefficients.

Exercise 4

In the last exercise you created what we could call a “null distribution” of coefficient estimates. This means
that you created a distribution of what the coefficients might have looked like if the null hypothesis, i.e. that
Bsmoke = 0 or that smoking is unrelated to fev, were true. Plot this null distribution and compare it to the
value of the coefficient from when you fit the model to the original data. Write a code that calculates the
percentage of the null distribution that is further from zero (in absolute value) than the fitted coefficient
from the original dataset. That number has a name! It’s a p-value from what is called a permutation test.
Congratulations! You've just performed a hypothesis test. Interpret the results of your test and make a
statement about the evidence for or against smoking having an effect on FEV after controlling for the other
variables in the model.

Exercise 5

There is another way to perform the same hypothesis test, weighing evidence for or against the impact
of smoking on FEV. This uses the R output from the original fitted model and relies on the statistical
approximation to the sampling distribution of Bgmokre. Essentially, we can assume that the sampling
distribution for Ssmore under the null hypothesis is a Student’s t distribution, with mean zero and standard
deviation equal to the standard error for the coefficient reported by R (see Kaplan Ch 15.5). So when you
type summary (fm) and you look at the coeflicient table, you will see a p-value for each coefficient separately.
Compare the p-value in this table to the p-value you obtained in Exercise 4. How similar/different are they?

Exercise 6

State in 1-2 sentences your conclusions from the ‘canned’ analysis performed in R using the 1m() function. Is
there evidence that smoking impacts FEV, once adjusting for other varibles? Justify your conclusions using a
confidence interval (hint: you can use the confint () function) and a p-value. Are these conclusions similar
to your conclusions from your permutation-based analysis of this data from Exercise 3 and 47 If not, discuss
how your permutation-based model was different and why that might have contributed to different results.

Extra credit

Read Kaplan sections 15.2 and 15.3 and consider the following output from these two analysis of variance
tables in R:



anova(fm)

## Analysis of Variance Table

##

## Response: fev

#Hit Df Sum Sq Mean Sq F value Pr(>F)

## age 1 280.919 280.919 1653.222 < 2.2e-16 **x*

## smoke 1 2.139 2.139 12.589 0.0004161 **x*

## height 1 93.779 93.779 551.892 < 2.2e-16 *xxx

## sex 1 3.803 3.803 22.383 2.743e-06 *xxx

## Residuals 649 110.280 0.170

## ——-

## Signif. codes: O '***x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1

fml <- lm(fev ~ age + height + sex + smoke, data=FEV)
anova(fm1)

## Analysis of Variance Table

##

## Response: fev

#i Df Sum Sq Mean Sq F value Pr(>F)

## age 1 280.919 280.919 1653.222 < 2.2e-16 *xx**

## height 1 95.326 95.326 560.996 < 2.2e-16 ***

## sex 1 4.027 4.027 23.699 1.416e-06 x*x**

## smoke 1 0.368 0.368 2.168 0.1414

## Residuals 649 110.280 0.170

## ——-

## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The mathematical equations for these two models are equivalent, so why does smoke have a different p-value
in these two models? Which do you think better represents the true association of smoking with FEV?
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