
Likelihood and Regression

Author: Nicholas G Reich

This material is part of the statsTeachR project

Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported
License: http://creativecommons.org/licenses/by-sa/3.0/deed.en US



Today’s Lecture

� Likelihood defined

� A simple, coin-flipping example

� Likelihood in the context of regression

These notes are based loosely on Michael Lavine’s book
Introduction to Statistical Thought, Chapters 2.3-2.4 and 3.2.

http://people.math.umass.edu/~lavine/Book/book.html


Parametric families of distributions

A parametric distribution

� In the analysis of real data, we often are willing to assume
that our data come from a distribution whose general form we
know, even if we don’t know the exact distribution.

� E.g. X ∼ Poisson(λ) or Y ∼ N(µ, σ2)

� Each of the above examples refer to families of distributions,
defined or indexed by particular parameter(s).

� In statistics, we try to estimate or learn about the unkown
parameter.



The likelihood function

Another look at a pdf

� Probability density functions (pdfs) define the probability of
seeing a specific observed value of your random variable,
conditional on a parameter.

f (X |θ)

� However, we can think about this same function another way,
by conditioning on the data and looking at the probability
taken by different values of the parameter.

f (θ|X ) = `(θ)

� Remember, the definition of the joint density of observations
that we assume to be i.i.d.: if X1,X2, ...,Xn ∼ i .i .d .f (x |θ)
then

f (X1, . . . ,Xn|θ) =
∏

f (Xi |θ)



Likelihood as evidence

“A wise man ... proportions his belief to his evidence.”
-David Hume, Scottish philosopher

We often compare values of the likelihood function as ratios,
weighing the evidence for or against particular values of θ.

`(θ1)

`(θ2)
= 1

implies we have the same evidence to support either θ1 or θ2.

`(θ1)

`(θ2)
> 1

implies we have more evidence to support θ1 over θ2.



Maximum likelihood estimation

In many settings, there is a unique θ that maximizes `(θ). This
value is called the maximum likelihood estimate (a.k.a. the MLE),
and is defined

θ̂ = argmaxθ`(θ)

� MLEs are typically found by taking the derivative of log `(θ)
w.r.t. each parameter and setting equal to zero.

� The likelihood surface is often well behaved, but not always!
You could have multiple maxima, a maximum at the boundary
of the parameter space, a non-differentiable `, etc...

� MLEs are often intuitive, i.e. for y1, y2, · · · , yn ∼ N(µ, σ2) the
MLE of µ is the sample mean.



Accuracy of estimation

“Doubt is not a pleasant condition, but certainty is an absurd one.”
-Voltaire, French writer and philosopher

What other values, in addition to θ̂, have reasonably high
likelihood?
We can define a likelihood set (akin to a confidence region) for
some value α ∈ (0, 1), as

LSα :=

{
θ :

`(θ)

`(θ̂)
≥ α

}

� LS are often (but not necessarily) intervals.

� There is no best value of α. Some people like 1/10. I like 1/8.

� Typically, as n→∞ the likelihood becomes more peaked, and
the size of LS shrinks.



A simple, canonical example: coin-flipping
Let’s flip some coins! A plausible statistical model here is for the
number of heads (X ) when I flip a coin N times

X ∼ Binomial(N, p)

where

f (x |p) = `(p) =

(
n

x

)
· px · (1− p)n−x
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A simple, canonical example: coin-flipping

Let’s start with three competing hypotheses about my coin and the
probability of getting a head:

HA : p = 0.5

HB : p = 0

HC : p = 1

source('http://tinyurl.com/coin-likelihood')
coin_lik(x=2, n=4)



Numerical optimization of a likelihood function
In R, you can write your own likelihood function and maximize it
using one of any number of different functions. For example:

ll <- function(p, n, x) -dbinom(x=x, size=n, prob=p, log=TRUE)

## for one-dimensional optimization

optimize(ll, interval=c(0,1), n=10, x=5)

## $minimum

## [1] 0.5

##

## $objective

## [1] 1.402043

## better for multi-dimensional optimization

tmp <- optim(par=list(p=.4), ll, n=10, x=5)

## Warning in optim(par = list(p = 0.4), ll, n = 10, x = 5):

one-dimensional optimization by Nelder-Mead is unreliable:

## use "Brent" or optimize() directly

c(tmp$par, tmp$value)

## p

## 0.500000 1.402043



Likelihood in a regression setting

We have our usual regression model

Yi = β0 + β1X1,i + · · ·+ βpXp,i + εi

where the εi are i.i.d. N(0, σ2). So our likelihood function is

`(β0, β1, · · · , βp, σ) =
n∏

i=1

p(yi |β0, · · · , βp, σ)

=
(
2πσ2

)− n
2 exp

[
− 1

2σ2

∑
i

(
yi − (β0 +

∑
βjXj ,i )

)2]



(Log)-Likelihood in a regression setting

log `(β0, β1, · · · , βp, σ) = C − n log σ −
1

2σ2

∑
i

(
yi − (β0 +

∑
βjXj ,i )

)2
where C is an irrelevant constant. To find the maximum of this
likelihood function, we take the derivative of these functions and
this gives way to a set of linear equations to solve for the βs. And
voila, we have our LSEs again!



Likelihood take-aways

� Likelihood is a flexible and principled framework for evaluating
evidence in your data.

� There is strong statistical theory behind likelihood.

� Likelihood is the foundation on which much modern statistical
analysis (including most Bayesian analysis) is built.



Finding your own MLEs for regression

Extra credit homework assignment: Take one of the datasets that
we have used in class so far and fit a multiple linear regression
model (with at least two predictors) using the optim() function to
obtain maximum likelihood estimators for the regression
coefficients and σ. Compare your results to the results from lm().


