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What is interaction?

Definition of interaction
Interaction occurs when the relationship between two variables
depends on the value of a third variable.
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Interaction vs. confounding

Definition of interaction
Interaction occurs when the relationship between two variables
depends on the value of a third variable. E.g. you could
hypothesize that the true relationship between physical activity
level and cancer risk may be di↵erent for men and women.

Definition of confounding

Confounding occurs when the measurable association between two
variables is distorted by the presence of another variable.
Confounding can lead to biased estimates of a true relationship
between variables.

⌅ It is important to include confounding variables (if possible!)
when they may be biasing your results.

⌅ Unmodeled interactions do not lead to “biased” estimates in
the same way that confounding does, but it can lead to a
richer and more detailed description of the data at hand.



Some real world examples?



How to include interaction in a MLR
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Key points

⌅ “easily” conceptualized with 1 continuous, 1 categorical
variable

⌅ models possible with other variable combinations, but
interpretation/visualization harder

⌅ two variable interactions are considered “first-order”
interactions (often used to define a class of models)

⌅ still a linear model, but no longer a strictly additive model



How to interpret an interaction model

For now, assume x
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Example interaction model with FEV data

library(Hmisc)

getHdata(FEV)

head(FEV)

## id age fev height sex smoke

## 1 301 9 1.708 57.0 female non-current smoker

## 2 451 8 1.724 67.5 female non-current smoker

## 3 501 7 1.720 54.5 female non-current smoker

## 4 642 9 1.558 53.0 male non-current smoker

## 5 901 9 1.895 57.0 male non-current smoker

## 6 1701 8 2.336 61.0 female non-current smoker

⌅ age: Age in years

⌅ fev: Maximum forced expiratory volume in one second

⌅ height: Height in inchces

⌅ sex: ’male’ or ’female’

⌅ smoker: ’current smoker’ or ’non-current smoker’



Example interaction model with FEV data
fev
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mi1 <- lm(fev ~ age + height + smoke + sex, data=FEV)

mi2 <- lm(fev ~ age + height*smoke + sex, data=FEV)

c(AIC(mi1), AIC(mi2))

round(summary(mi2)$coef,2)

## [1] 703.7935 700.4992

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -4.35 0.23 -19.12 0.00

## age 0.07 0.01 7.17 0.00

## height 0.10 0.00 21.08 0.00

## smokecurrent smoker -2.61 1.10 -2.37 0.02

## sexmale 0.15 0.03 4.43 0.00

## height:smokecurrent smoker 0.04 0.02 2.30 0.02

For current smokers, the relationship between height and FEV is stronger than in

non-current smokers. In non-current smokers, we observe that a one-unit increase in

height is associated with a 0.10 increase in expected FEV. In current smokers, this

changes to a 0.14 increase in expected FEV.
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Example interaction model with FEV data

ggplot(FEV, aes(height, fev, color=smoke)) +

geom_point() + geom_smooth(method="lm")
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Example interaction model with FEV data
The visreg package plots not the data but the partial residuals
(a.k.a. the adjusted variable) plot.

library(visreg)

visreg(mi2, "height", by="smoke")
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Example interaction model with FEV data

visreg(mi2, "height", by="smoke", overlay=TRUE)
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