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Today's Lecture

m Model selection vs. model checking

Stepwise model selection

m Criterion-based approaches

m Cross-validation



Model selection vs. model checking

Assume y|x = f(x) + ¢

= model selection focuses on how you construct f(-);

m model checking asks whether the € match the assumed form.



Why are you building a model in the first place?



Model selection: considerations

Things to keep in mind...

s Why am | building a model? Some common answers

» Estimate an association
» Test a particular hypothesis
» Predict new values

m What predictors will | allow?
m What predictors are needed?
m What forms for f(x) should | consider?

Different answers to these questions will yield different final
models.



Model

selection: realities

All models are wrong. Some are more useful than others.
- George Box

If we are asking which is the “true” model, we will have a bad
time

In practice, issues with sample size, collinearity, and available
predictors are real problems

It is often possible to differentiate between better models and
less-good models, though

The key decisions in model selection almost always involve
balancing model complexity with the potential for overfitting.



Basic idea for model selection

A very general algorithm

Specify a “class” of models

Define a criterion to quantify the fit of each model in the class

Select the model that optimizes the criterion you're using

Subject the selected model to model checking/diagnostics,
possibly adjust interpretations as needed.

Again, we're focusing on f(x) in the model specification. Once
you've selected a model, you should subject it to regression
diagnostics — which might change or augment the class of models
you specify or alter your criterion.



Classes of models

Some examples of classes of models

m Linear models including all subsets of x, ..., x,

m Linear models including all subsets of xi, ..., x, and their first
order interactions

m All functions f(x1) such that f”(x;) is continuous

m Additive models of the form f(x) = fi(x1) + f2(x2) + f3(x3)...
where f;(xx) is continuous



Popular criteria

» Adjusted R?

m Residual mean square error

m Akaike Information Criterion (AIC)

m Bayes Information Criterion (BIC)

m Cross-validated error (similar to Prediction RSS, aka PRESS)
m F- or t-tests (via stepwise selection)

m Likelihood ratio tests (F-tests)



Adjusted R?

m Recall: RSS
RZ=1- —
TSS
m Definition of adjusted R?:
R2 — 1-_— RSS/(n—p—1) —1_ G model
TSS/(n—1) U%u”
n—1
= 1-—(1—-R?
pP—— 1 ( )

m Minimizing the standard error of prediction means minimizing

~AD . . P 2
0% ode Which in turn means maximizing R;
m Unlike with R?, adding a predictor will not necessarily increase

R2 unless it has some predictive value



Residual Mean Square Error

Equivalent to Adjusted R?...

RMSE = R755
n—p-—1
Can choose either based on
m the model with minimum RMSE, or
m the model that has RMSE approximately equal to the MSE
from the full model

Note: minimizing RMSE is equivalent to maximizing Adjusted R?



Sidebar: Confusing notation about p

p can mean different things

m p can be the number of covariates you have in your model
(not including your column of 1s and the intercept

m p can be the number of betas you estimate, including So.

In these slides, p is the former: the number of covariates.



AlC

AIC (“Akaike Information Criterion”) measures goodness-of-fit
through RSS (equivalently, log likelihood) and penalizes model size:

AIC = nlog(RSS/n) +2(p+ 1)

m Small AIC's are better, but scores are not directly interpretable

m Penalty on model size tries to induce parsimony



Example of AIC in practice
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average duration, in years |r, = serotype-specific transmission parameters included

r(t) = seasonal transmission parameters included
loglik = log likelihood for the given model

df = degrees of freedom of the model
AAIC = change in Akaike Information Criterion over null model

Reich et al. (2013) Journal of the Royal Society Interface




BIC

BIC (“Bayes Information Criterion”) similarly measures
goodness-of-fit through RSS (equivalently, log likelihood) and
penalizes model size:

BIC = nlog(RSS/n) + (p + 1) log(n)

m Small BIC's are better, but scores are not directly interpretable

m AlIC and BIC measure goodness-of-fit through RSS, but use
different penalties for model size. They won't always give the
same answer

Bonus link! Bolker on AIC vs. BIC


http://emdbolker.wikidot.com/blog:aic-vs-bic

Example of BIC in practice

Vasantha and Venkatesan (2014) PLoS ONE

Number of

Predictors in Breslow’s Nodal
Step Model Thickness DCCD Ulceration Age Status® Localization Gender BIC
1 7 0.0068 0.0009 0.0051 0.0371 0.1380 0.8052 1,657.8
2 6 0.0069 0.0008 0.0050 0.0340 0.1035 - 1,650.9
3 5 <0.0001 0.0011 0.0008 0.0054 0.0475 — — 1,646.6
4 4 <0.0001 <0.0001 0.0005 0.0127 — — — 1,643.6
5 3 <0.0001 <0.0001 0.0002 — — — — 1,642.9
6 2 <0.0001 <0.0001 - - - - - 1,649.8
7 1 <0.0001 - - - = — — 1,679.1
p-Values are for testing whether a hazard ratio equals 1; low BIC identifies best model.
°As determined by routine histopathology.
doi:10.1371/journal.pmed.1001604.t004



Example of model selection in practice

TABLE 2. Results of unrestricted itudinal latent class ysis in the Medical Council
1946 National Survey of Health and Development (pooled sexes, n= 3,272)

Three classes Four classes Five classes
(LLCA*-3) (LLCA-4) (LLCA-5)
Sequential model comparisons (T + 1 classes vs. T classes) 3vs.2 4vs. 3 5vs. 4
Log-likelihood value for model with 7+ 1 classes -3,243.605 -3,211.173 -3,201.380
Log-likelihood value for model with T classes —-3,344.440 -3,243.605 -3,211.173
—2 difference in log-likelihood 201.669 64.863 19.587
Difference in no. of parameters (T + 1 classes vs. T
classes) 7 8 8
Lo-Mendell-Rubin adjusted LRT* value 198.171 63.877 19.289
Lo-Mendell-Rubin adjusted LRT p value <0.0001 <0.0001 0.0322
Bootstrap LRT p value <0.01 <0.01 >0.50
Chi-square goodness-of-fit tests
Degrees of freedom 43 36 29
LRT x? 123.588 58.725 39.138
pvalue <0.0001 0.0098 0.0990
Bootstrap p valuet <0.01 0.02 0.11
Pearson y? 132.431 49416 35.966
pvalue <0.0001 0.0674 0.1746
Bootstrap p valuet <0.01 0.10 0.40
Information criteriont
Akaike’s Information Criterion 6,527.210 6,476.347 6,470.760
Bayesian Information Criterion 6,649.073 6,640.862 6,677.927
Sample-size-adjusted Bayesian Information Criterion 6,585.524 6,555.071 6,569.894
Entropy 0.856 0913 0.897
Condition number§ 0.120E-03 0.783E-3 0.379E-03

* LLCA, longitudinal latent class analysis; LRT, likelihood ratio test.

1 Bootstrap p values were based on 200 resamples.

3 Minimum values are shown in italic type.

§ Condition number = ratio of the largest eigenvalue to the smallest eigenvalue for the Fisher information
matrix. Small values less than 10E- indicate problems with model identification.

Croudace et al (2003) Amer J Epidemiology



Cross-validation estimates " out-of-sample” prediction error
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FIGURE 5.3. A schematic display of LOOCYV. A set of n data points is repeat-
edly split into a training set (shown in blue) containing all but one observation,
and a validation set that contains only that observation (shown in beige). The test
error is then estimated by averaging the n resulting MSE’s. The first training set
contains all but observation 1, the second training set contains all but observation
2, and so forth.

More on cross-validation in ISL Chapter 5.



eave-one-out cross-validation, made simple

By fitting n models, leaving one observation out sequentially, we
could calculate the out-of-sample prediction error as:

1 (=i
Vimy = S i -5y

This looks computationally intensive, but for linear regression
models this is equivalent to

1 yi—9\>
Mo =, 22 (1—/7,-,-)

where the § come from the linear model fitted to all the data.
No resampling needed!




k-fold cross-validation
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FIGURE 5.5. A schematic display of 5-fold CV. A set of n observations is
randomly split into five non-overlapping groups. Each of these fifths acts as a
validation set (shown in beige), and the remainder as a training set (shown in
blue). The test error is estimated by averaging the five resulting MSE estimates.

Figure credits: ISL Chapter 5.



k-fold cross-validation

As an alternative, we can fit k models, by creating a random k-fold
partition of your data,and calculate out-of-sample prediction error:

k
1
CViy = 7 D_ MSE;
i=1

where MSE; is the mean squared error of the observations in the
i*" held out fold.

Can be more computationally feasible when n is large and you
don’t have the linear regression h;ji computational shortcut.



Why LOOCYV can still lead to overfitting

Note: sums of highly correlated variables have high variance.

Which has a higher variance, CV/y) or CV(,)?

Common choices for k are 5 or 10.



Model building is an art

Putting this all together requires

m knowledge of the process generating the data
m detailed data exploration

m checking assumptions

m careful model building

m awareness of the potential for overfitting

m patience patience patience



Sequential variable selection methods

PROCEED WITH CAUTION: Stepwise selection methods are
dangerous if you want accurate inferences

General idea: add/remove variables sequentially.

There are many potential models — usually exhausting the
model space is difficult or infeasible

Stepwise methods don't consider all possibilities

One paper* showed that stepwise analyses produced models
that...

represented noise 20-75% of the time

contained <50% of actual predictors

correlation btw predictors — including more predictors
number of predictors correlated with number of noise
predictors included

* Derksen and Keselman (1992) British J Math Stat Psych



MORE concerns with sequential methods

m It's common to treat the final model as if it were the only
model ever considered — to base all interpretation on this
model and to assume the inference is accurate

m This doesn't really reflect the true model building procedure,
and can misrepresent what actually happened

m Inference is difficult in this case; it's hard to write down a
statistical framework for the entire procedure

m Predictions can be made from the final model, but uncertainty
around predictions will be understated

m P-values, Cls, etc will be incorrect



Variable selection in polynomial models

A quick note about polynomials. If you fit a model of the form
Yi = Bo+ Bix+ Box® + €

and find the quadratic term is significant but the linear term is

not...

m You should still keep the linear term in the model

m Otherwise, your model is sensitive to centering — shifting x
will change your model

m Using orthogonal polynomials helps with this



Variable selection: the intercept

A quick note about the intercept in MLR. If you fit a model of the
form

yi = Po+ Bix1+ Baxa + ... + €
and find the intercept term is not significant ...
m in general, you should still keep the intercept in the model

m Otherwise, your model is very strongly restricted in the linear
form it can take!



Sample size can limit the number of predictors

p (total number of js) should be < {I, where

Type of Response Variable Limiting sample size m

Continuous n (total sample size)
Binary min(ny, ny)

Ordinal (k categories) n— % Zf-;l n?
Failure (survival) time number of failures

Table adapted from Harrel (2012) notes from “Regression Modeling Strategies” workshop.



Example: lung data

ggplot(dat, aes(education, disease)) + geom_point() +
geom_smooth(method="1m", color="red") +
geom_smooth(color="blue")
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Example: lung data
Run a LOOCV to determine the optimal polynomial degree on
education.
n <- 5
mses <- data.frame(deg=1:n, mse=rep(NA, n))
for(i in 1:n) {

fm <- Im(disease ~ poly(education, i), data=dat)
mses[i, "mse"] <- sum( ( resid(fm)/(1-hatvalues(fm)) )~2 )/nrow(dat

}

ggplot (mses, aes(deg, mse)) + geom_blank()
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Example: lung data
Run a LOOCV to determine the optimal polynomial degree on
education.
n <- 5
mses <- data.frame(deg=1:n, mse=rep(NA, n))
for(i in 1:n) {

fm <- Im(disease ~ poly(education, i), data=dat)
mses[i, "mse"] <- sum( ( resid(fm)/(1-hatvalues(fm)) )~2 )/nrow(dat

}

ggplot (mses, aes(deg, mse)) + geom_line() + geom_point()

78+
Q

0 77-
IS

76+

75+

deg



Example: lung data (on your own)

Use the cv.glm() function to calculate the k-fold cross-validated
error. Are the results the same?



A more modern approach to variable selection

Penalized regression (a.k.a. “shrinkage”, “regularization”)

m adds an explicit penalty to the least squares criterion

m keeps regression coefficients from being too large, or can
shrink coefficients to zero

Keywords for methods: LASSO, Ridge Regression
More in Biostat Methods 3 (fall semester)!

Whole branches of modern statistics are devoted to figuring out
what to do when p > n.



Today's big ideas

Model selection key points:

m There is no one-size-fits-all formula for model selection.

m Consult a variety of metrics, weight more heavily ones that
may be more suited to your application (e.g. cross-validated
metrics for prediction,...)

m Beware of black-box selection methods.
m Cross-validation can be an important tool.

m Consider penalized regression methods.



