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Today’s Lecture

� Model selection vs. model checking

� Stepwise model selection

� Criterion-based approaches

� Cross-validation



Model selection vs. model checking

Assume y |x = f (x) + ε

� model selection focuses on how you construct f (·);

� model checking asks whether the ε match the assumed form.



Why are you building a model in the first place?



Model selection: considerations

Things to keep in mind...

� Why am I building a model? Some common answers
I Estimate an association
I Test a particular hypothesis
I Predict new values

� What predictors will I allow?

� What predictors are needed?

� What forms for f (x) should I consider?

Different answers to these questions will yield different final
models.



Model selection: realities

All models are wrong. Some are more useful than others.
- George Box

� If we are asking which is the “true” model, we will have a bad
time

� In practice, issues with sample size, collinearity, and available
predictors are real problems

� It is often possible to differentiate between better models and
less-good models, though

� The key decisions in model selection almost always involve
balancing model complexity with the potential for overfitting.



Basic idea for model selection

A very general algorithm

� Specify a “class” of models

� Define a criterion to quantify the fit of each model in the class

� Select the model that optimizes the criterion you’re using

� Subject the selected model to model checking/diagnostics,
possibly adjust interpretations as needed.

Again, we’re focusing on f (x) in the model specification. Once
you’ve selected a model, you should subject it to regression
diagnostics – which might change or augment the class of models
you specify or alter your criterion.



Classes of models

Some examples of classes of models

� Linear models including all subsets of x1, ..., xp

� Linear models including all subsets of x1, ..., xp and their first
order interactions

� All functions f (x1) such that f ′′(x1) is continuous

� Additive models of the form f (x) = f1(x1) + f2(x2) + f3(x3)...
where f ′′k (xk) is continuous



Popular criteria

� Adjusted R2

� Residual mean square error

� Akaike Information Criterion (AIC)

� Bayes Information Criterion (BIC)

� Cross-validated error (similar to Prediction RSS, aka PRESS)

� F - or t-tests (via stepwise selection)

� Likelihood ratio tests (F-tests)



Adjusted R2

� Recall:

R2 = 1− RSS

TSS

� Definition of adjusted R2:

R2
a = 1− RSS/(n − p − 1)

TSS/(n − 1)
= 1−

σ̂2model

σ̂2null

= 1− n − 1

n − p − 1
(1− R2)

� Minimizing the standard error of prediction means minimizing
σ̂2model which in turn means maximizing R2

a

� Unlike with R2, adding a predictor will not necessarily increase
R2
a unless it has some predictive value



Residual Mean Square Error

Equivalent to Adjusted R2...

RMSE =
RSS

n − p − 1

Can choose either based on

� the model with minimum RMSE, or

� the model that has RMSE approximately equal to the MSE
from the full model

Note: minimizing RMSE is equivalent to maximizing Adjusted R2



Sidebar: Confusing notation about p

p can mean different things

� p can be the number of covariates you have in your model
(not including your column of 1s and the intercept

� p can be the number of betas you estimate, including β0.

In these slides, p is the former: the number of covariates.



AIC

AIC (“Akaike Information Criterion”) measures goodness-of-fit
through RSS (equivalently, log likelihood) and penalizes model size:

AIC = n log(RSS/n) + 2(p + 1)

� Small AIC’s are better, but scores are not directly interpretable

� Penalty on model size tries to induce parsimony



Example of AIC in practice
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BIC

BIC (“Bayes Information Criterion”) similarly measures
goodness-of-fit through RSS (equivalently, log likelihood) and
penalizes model size:

BIC = n log(RSS/n) + (p + 1) log(n)

� Small BIC’s are better, but scores are not directly interpretable

� AIC and BIC measure goodness-of-fit through RSS, but use
different penalties for model size. They won’t always give the
same answer

Bonus link! Bolker on AIC vs. BIC

http://emdbolker.wikidot.com/blog:aic-vs-bic


Example of BIC in practice

Vasantha and Venkatesan (2014) PLoS ONE



Example of model selection in practice

Croudace et al (2003) Amer J Epidemiology



Cross-validation estimates ”out-of-sample” prediction error

More on cross-validation in ISL Chapter 5.



Leave-one-out cross-validation, made simple

By fitting n models, leaving one observation out sequentially, we
could calculate the out-of-sample prediction error as:

CV(n) =
1

n

∑
(yi − ŷ

(−i)
i )2

This looks computationally intensive, but for linear regression
models this is equivalent to

CV(n) =
1

n

∑(
yi − ŷi
1− hii

)2

where the ŷ come from the linear model fitted to all the data.
No resampling needed!



k-fold cross-validation

Figure credits: ISL Chapter 5.



k-fold cross-validation

As an alternative, we can fit k models, by creating a random k-fold
partition of your data,and calculate out-of-sample prediction error:

CV(k) =
1

k

k∑
i=1

MSEi

where MSEi is the mean squared error of the observations in the
i th held out fold.

Can be more computationally feasible when n is large and you
don’t have the linear regression hi i computational shortcut.



Why LOOCV can still lead to overfitting

Note: sums of highly correlated variables have high variance.

Which has a higher variance, CV(k) or CV(n)?

Common choices for k are 5 or 10.



Model building is an art

Putting this all together requires

� knowledge of the process generating the data

� detailed data exploration

� checking assumptions

� careful model building

� awareness of the potential for overfitting

� patience patience patience



Sequential variable selection methods

PROCEED WITH CAUTION: Stepwise selection methods are
dangerous if you want accurate inferences

� General idea: add/remove variables sequentially.

� There are many potential models – usually exhausting the
model space is difficult or infeasible

� Stepwise methods don’t consider all possibilities

� One paper∗ showed that stepwise analyses produced models
that...

� represented noise 20-75% of the time
� contained <50% of actual predictors
� correlation btw predictors −→ including more predictors
� number of predictors correlated with number of noise

predictors included

∗ Derksen and Keselman (1992) British J Math Stat Psych



MORE concerns with sequential methods

� It’s common to treat the final model as if it were the only
model ever considered – to base all interpretation on this
model and to assume the inference is accurate

� This doesn’t really reflect the true model building procedure,
and can misrepresent what actually happened

� Inference is difficult in this case; it’s hard to write down a
statistical framework for the entire procedure

� Predictions can be made from the final model, but uncertainty
around predictions will be understated

� P-values, CIs, etc will be incorrect



Variable selection in polynomial models

A quick note about polynomials. If you fit a model of the form

yi = β0 + β1x + β2x
2 + εi

and find the quadratic term is significant but the linear term is
not...

� You should still keep the linear term in the model

� Otherwise, your model is sensitive to centering – shifting x
will change your model

� Using orthogonal polynomials helps with this



Variable selection: the intercept

A quick note about the intercept in MLR. If you fit a model of the
form

yi = β0 + β1x1 + β2x2 + ...+ εi

and find the intercept term is not significant ...

� in general, you should still keep the intercept in the model

� Otherwise, your model is very strongly restricted in the linear
form it can take!



Sample size can limit the number of predictors

p (total number of βs) should be < m
15

, where

Type of Response Variable Limiting sample size m

Continuous n (total sample size)
Binary min(n1, n2)

Ordinal (k categories) n − 1
n2
∑k

i=1 n
3
i

Failure (survival) time number of failures

Table adapted from Harrel (2012) notes from “Regression Modeling Strategies” workshop.



Example: lung data

ggplot(dat, aes(education, disease)) + geom_point() +

geom_smooth(method="lm", color="red") +

geom_smooth(color="blue")
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Example: lung data
Run a LOOCV to determine the optimal polynomial degree on
education.

n <- 5

mses <- data.frame(deg=1:n, mse=rep(NA, n))

for(i in 1:n) {
fm <- lm(disease ~ poly(education, i), data=dat)

mses[i, "mse"] <- sum( ( resid(fm)/(1-hatvalues(fm)) )^2 )/nrow(dat)

}
ggplot(mses, aes(deg, mse)) + geom_blank()
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Example: lung data
Run a LOOCV to determine the optimal polynomial degree on
education.

n <- 5

mses <- data.frame(deg=1:n, mse=rep(NA, n))

for(i in 1:n) {
fm <- lm(disease ~ poly(education, i), data=dat)

mses[i, "mse"] <- sum( ( resid(fm)/(1-hatvalues(fm)) )^2 )/nrow(dat)

}
ggplot(mses, aes(deg, mse)) + geom_line() + geom_point()
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Example: lung data (on your own)

Use the cv.glm() function to calculate the k-fold cross-validated
error. Are the results the same?



A more modern approach to variable selection

Penalized regression (a.k.a. “shrinkage”, “regularization”)

� adds an explicit penalty to the least squares criterion

� keeps regression coefficients from being too large, or can
shrink coefficients to zero

� Keywords for methods: LASSO, Ridge Regression

� More in Biostat Methods 3 (fall semester)!

Whole branches of modern statistics are devoted to figuring out
what to do when p ≥ n.



Today’s big ideas

Model selection key points:

� There is no one-size-fits-all formula for model selection.

� Consult a variety of metrics, weight more heavily ones that
may be more suited to your application (e.g. cross-validated
metrics for prediction,...)

� Beware of black-box selection methods.

� Cross-validation can be an important tool.

� Consider penalized regression methods.


